Workflow

April 30, 2019
How to Improve Medical Care, Overall

• “Expert Systems” idea: understand what world-class experts do, and provide decision support to raise others’ performance to that level
 • improves average
• “Protocol” idea: get everyone to treat similar patients in similar ways
 • reduces variance
• Which is better?
 • Depends on “loss function”
 • If worst performance is disproportionately more costly than best performance is less costly, then it’s more important to eliminate the worst
Hypothetical Clinician Performance

Performance distributions under three scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Base</th>
<th>Improved</th>
<th>Narrowed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arbitrary Scale

- Base
- Improved 10%
- Narrowed 50%
Nonlinearity is important
Cost of n-th Action Under Three Scenarios
Hypothetical Costs Under Three Scenarios

Cost distributions under three scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Basev</th>
<th>Improvedv</th>
<th>Narrowedv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1781</td>
<td>1694</td>
<td>1619</td>
</tr>
</tbody>
</table>
How to Narrow the Performance Distribution?

- Guidelines and Protocols
 - Learned bodies prescribe appropriate methods to diagnose and treat patients
 - Often based on meta-analysis of clinical trials results
 - Usual caveats about lack of appropriate trials for most conditions
Class (Strength) of Recommendation

Class I (Strong)

- Benefit >>> Risk

 - Suggested phrases for writing recommendations:
 - Is recommended
 - Is indicated/useful/effective/beneficial
 - Should be performed/administered/other
 - Comparative-Effectiveness Phrases‡:
 - Treatment-strategy A is recommended/indicated in preference to treatment B
 - Treatment A should be chosen over treatment B

Class IIa (Moderate)

- Benefit > Risk

 - Suggested phrases for writing recommendations:
 - Is reasonable
 - Can be useful/effective/beneficial
 - Comparative-Effectiveness Phrases‡:
 - Treatment-strategy A is probably recommended/indicated in preference to treatment B
 - It is reasonable to choose treatment A over treatment B

Class IIb (Weak)

- Benefit > Risk

 - Suggested phrases for writing recommendations:
 - May/might be reasonable
 - May/might be considered
 - Usefulness/effectiveness is unknown/unclear/uncertain or not well established

Class III: No Benefit (Moderate)

- Benefit = Risk

 - Generally, LOE A or B use only

 - Suggested phrases for writing recommendations:
 - Is not recommended
 - Is not indicated/useful/effective/beneficial
 - Should not be performed/administered/other

Class III: Harm (Strong)

- Risk > Benefit

 - Suggested phrases for writing recommendations:
 - Potentially harmful
 - Causes harm
 - Associated with excess morbidity/mortality
 - Should not be performed/administered/other

Level (Quality) of Evidence‡

Level A

- High-quality evidence‡ from more than 1 RCT
- Meta-analyses of high-quality RCTs
- One or more RCTs corroborated by high-quality registry studies

Level B-R

- Moderate-quality evidence‡ from 1 or more RCTs
- Meta-analyses of moderate-quality RCTs

Level B-NR

- Moderate-quality evidence‡ from 1 or more well-designed, well-executed nonrandomized studies, observational studies, or registry studies
- Meta-analyses of such studies

Level C-LD

- Randomized or nonrandomized observational or registry studies with limitations of design or execution
- Meta-analyses of such studies
- Physiological or mechanistic studies in human subjects

Level C-EO

- Consensus of expert opinion based on clinical experience

COR and LOE are determined independently (any COR may be paired with any LOE).

A recommendation with LOE C does not imply that the recommendation is weak. Many important clinical questions addressed in guidelines do not lend themselves to clinical trials. Although RCTs are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

* The outcome or result of the intervention should be specified (an improved clinical outcome or increased diagnostic accuracy or incremental prognostic information).

† For comparative-effectiveness recommendations (COR I and IIa; LOE A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.

‡ The method of assessing quality is evolving, including the application of standardized, widely used, and preferably validated evidence grading tools; for systematic reviews, the incorporation of an Evidence Review Committee.

COR indicates Class of Recommendation: EG, expert opinion; LD, limited data; LOE, Level of Evidence; NR, nonrandomized; R, randomized; and RCT, randomized controlled trial.
"Take-Home Messages to Reduce Risk of Atherosclerotic Cardiovascular Disease (ASCVD) through Cholesterol Management

1. In all individuals, emphasize heart-healthy lifestyle across the life-course
2. In patients with clinical ASCVD, reduce low-density lipoprotein cholesterol (LDL-C) with high-intensity statin therapy or maximally tolerated statin therapy
3. In very high-risk ASCVD, use a LDL-C threshold of 70 mg/dL (1.8 mmol/L) to consider addition of nonstatins to statin therapy
4. In patients with severe primary hypercholesterolemia (LDL-C level ≥190 mg/dL [≥4.9 mmol/L]), without calculating 10-year ASCVD risk, begin high-intensity statin therapy without calculating 10-year ASCVD risk
5. In patients 40 to 75 years of age with diabetes mellitus and LDL-C ≥70 mg/dL (≥1.8 mmol/L), start moderate-intensity statin therapy without calculating 10-year ASCVD risk
6. In adults 40 to 75 years of age evaluated for primary ASCVD prevention, have a clinician–patient risk discussion before starting statin therapy
7. In adults 40 to 75 years of age without diabetes mellitus and with LDL-C levels ≥70 mg/dL (≥1.8 mmol/L), at a 10-year ASCVD risk of ≥7.5%, start a moderate-intensity statin if a discussion of treatment options favors statin therapy
8. In adults 40 to 75 years of age without diabetes mellitus and 10-year risk of 7.5% to 19.9% (intermediate risk), risk-enhancing factors favor initiation of statin therapy (see #7)
9. In adults 40 to 75 years of age without diabetes mellitus and with LDL-C levels ≥70 mg/dL–189 mg/dL (≥1.8-4.9 mmol/L), at a 10-year ASCVD risk of ≥7.5% to 19.9%, if a decision about statin therapy is uncertain, consider measuring CAC
10. Assess adherence and percentage response to LDL-C–lowering medications and lifestyle changes with repeat lipid measurement 4 to 12 weeks after statin initiation or dose adjustment, repeated every 3 to 12 months as needed
Primary Prevention

Assess ASCVD Risk in Each Age Group
Emphasize Adherence to Healthy Lifestyle

- **Age 0-19 y**
 - Lifestyle to prevent or reduce ASCVD risk
 - Diagnosis of Familial Hypercholesterolemia → statin

- **Age 20-39 y**
 - Estimate lifetime risk to encourage lifestyle to reduce ASCVD risk
 - Consider statin if family history, premature ASCVD, and LDL-C ≥160 mg/dL (≥4.1 mmol/L)

- **Age 40-75 y**
 - LDL-C ≥190 mg/dL (≥4.9 mmol/L)
 - No risk assessment; High-intensity statin (Class I)
 - Age 40-75 y and LDL-C ≥70 to <190 mg/dL (≥1.8-<4.9 mmol/L) without diabetes mellitus
 - 10-year ASCVD risk percent begins risk discussion
 - Diabetes mellitus and age 40-75 y
 - Moderate-intensity statin (Class I)

- **Age >75 y**
 - Clinical assessment, Risk discussion

ASCVD Risk Enhancers:
- Family history of premature ASCVD
- Persistently elevated LDL-C (≥160 mg/dL (≥4.1 mmol/L)
- Chronic kidney disease
- Metabolic syndrome
- Conditions specific to women (e.g., preeclampsia, premature menopause)
- Inflammatory diseases (especially rheumatoid arthritis, psoriasis, HIV)
- Ethnicity factors (e.g., South Asian ancestry)

Lipid/Biomarkers:
- Persistently elevated triglycerides (≥175 mg/mL)

In selected individuals if measured:
- hs-CRP ≥2.0 mg/L
- Lp(a) levels >50 mg/dL or >125 nmo/L
- apoB ≥130 mg/dL
- Ankle-brachial index (ABI) <0.9

Risk Discussion:
- If risk enhancers present then risk discussion regarding moderate-intensity statin therapy Class (IIb)

Risk Discussion:
- If risk estimate + risk enhancers favor statin, initiate moderate-intensity statin to reduce LDL-C by 30% - 49% Class (I)

Risk Discussion:
- If risk decision is uncertain:
 - Consider measuring CAC in selected adults:
 - CAC = zero (lowers risk; consider no statin, unless diabetes, family history of premature CHD, or cigarette smoking are present)
 - CAC = 1-99 favors statin (especially after age 55)
 - CAC = 100+ and/or ≥75th percentile, initiate statin therapy

Risk Discussion:
- Age >75 y
 - Clinical assessment, Risk discussion
Secondary Prevention in Patients with Clinical ASCVD

Clinical ASCVD

Healthy Lifestyle

ASCVD not at very high-risk*

Age ≤75 yrs

High-intensity statin (Goal: ↓ LDL-C ≥50%) (Class I)

If high-intensity statin not tolerated, use moderate-intensity statin (Class I)

If on maximal statin & LDL-C ≥70 mg/dL (≥1.8 mmol/L), adding ezetimibe may be reasonable (Class IIa)

Initiation of moderate or high-intensity statin is reasonable (Class IIa)

Continuation of high-intensity statin is reasonable (Class IIa)

Age >75

Very high-risk* ASCVD

High-intensity or maximal statin (Class I)

If on maximal statin & LDL-C ≥70 mg/dL (≥1.8 mmol/L), adding ezetimibe is reasonable (Class IIa)

If PCSK9-I is considered, add ezetimibe to maximal statin before adding PCSK9-I (Class I)

Dashed arrow indicates RCT-supported efficacy, but is less cost effective

If clinically judged-maximal LDL-C lowering therapy & LDL-C ≥70 mg/dL (≥1.8 mmol/L), or non-HDL-C ≥100 mg/dL (≥2.6 mmol/L), adding PCSK9-I is reasonable (Class IIa)

*Very high-risk includes a history of multiple major ASCVD events or 1 major ASCVD event and multiple high-risk conditions (Table 4 on following page).
Very High-Risk for Future ASCVD Events

Very High Risk includes a history of multiple major ASCVD events or one major ASCVD event and multiple high-risk conditions.

<table>
<thead>
<tr>
<th>Major ASCVD Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent acute coronary syndrome (within the past 12 months)</td>
</tr>
<tr>
<td>History of myocardial infarction (other than recent acute coronary syndrome event listed above)</td>
</tr>
<tr>
<td>History of ischemic stroke</td>
</tr>
<tr>
<td>Symptomatic peripheral arterial disease (history of claudication with ankle brachial index <0.85, or previous revascularization or amputation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High-Risk Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥65 years</td>
</tr>
<tr>
<td>Heterozygous familial hypercholesterolemia</td>
</tr>
<tr>
<td>History of prior coronary artery bypass surgery or PCI outside of the major ASCVD event(s)</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Chronic kidney disease (eGFR 15-59 mL/min/1.73 m2)</td>
</tr>
<tr>
<td>Current smoking</td>
</tr>
<tr>
<td>Persistently elevated LDL-C (LDL-C ≥100 mg/dL (≥2.6 mmol/L)) despite maximally tolerated statin therapy and ezetimibe</td>
</tr>
<tr>
<td>History of congestive heart failure</td>
</tr>
</tbody>
</table>
Where to Find Guidelines

• AHRQ’s National Guideline Clearinghouse
 • Since 1997, but shut down by current administration in July 2018
• Guideline Central (https://www.guidelinecentral.com), ~2K guidelines
 • Assessment of Therapeutic Effectiveness
 • Counseling
 • Diagnosis
 • Evaluation
 • Management
 • Prevention
 • Rehabilitation
 • Risk Assessment
 • Screening
 • Technology Assessment
 • Treatment
<table>
<thead>
<tr>
<th>Assessment and Therapeutic Effectiveness</th>
<th>Calculators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk reduction of prostate cancer with drugs or nutritional supplements</td>
<td>4Ts Score for Heparin-Induced Thrombocytopenia</td>
</tr>
<tr>
<td>Stem cell transplantation in multiple myeloma</td>
<td>A-a O2 Gradient (need for massive transfusion in trauma)</td>
</tr>
<tr>
<td>Stem cell transplantation in myelodysplastic syndromes and acute myeloid leukemia</td>
<td>ABCD2 Score for TIA (risk of stroke after a TIA)</td>
</tr>
<tr>
<td>Stem cell transplantation in primary systemic amyloidosis</td>
<td>ACR-EULAR Gout Classification Criteria</td>
</tr>
<tr>
<td>The role of liver resection in colorectal cancer metastases</td>
<td>ADAPT Protocol for Cardiac Event (2-hours risk of cardiac event for chest pain)</td>
</tr>
<tr>
<td>Optimal chemotherapy for recurrent ovarian cancer</td>
<td>APACHE II Score (ICU mortality)</td>
</tr>
<tr>
<td>Radionuclide therapy for neuroendocrine malignancies</td>
<td>APGAR Score (neonates 1 and 5 minutes after birth)</td>
</tr>
</tbody>
</table>

https://www.guidelinecentral.com/calculators/
Top-Down vs. Bottom-Up

• Guidelines
 • Typically developed by “learned societies”, usually MDs
 • Choice based on clinical importance, controversy, “pet” ideas, …

• Care Plans
 • Individualized to specific patient
 • Developed by nurse taking care of that patient

• Clinical Pathways
 • Generalization of Care Plans
 • Typically developed by hospitals, combining multidisciplinary sources
 • Guidelines, Nursing experience, Clinical Trials, …
 • Choice based on need to standardize care locally, sometimes in response to errors
<table>
<thead>
<tr>
<th>Assessment</th>
<th>Nursing Diagnosis</th>
<th>Patient Outcomes</th>
<th>Interventions</th>
<th>Rationale</th>
<th>Evaluation of Outcomes</th>
</tr>
</thead>
</table>
| Objective Data:
-Gangrene infected left foot
-Open wound
-Wet to dry dressing
-Pain upon movement, grimacing, shaking
-She immediately requests Morphine
-She needs assistance when ambulating-even to sit up in bed | #1: Impaired tissue integrity r/t wound, presence of infection. | Patient will:
1. Report any altered sensation or pain at site of tissue impairment during January 23 and 24.
2. Demonstrate understanding of plan to heal tissue and prevent injury by 1/24.
3. Describe measures to protect and heal the tissue, including wound care by 1/24.
4. Experience a wound that decreases in size and has increased granulation tissue.
5. Achieve functional pain goal of zero by 1/24 per patient’s verbalizations. | 1. Monitor color, temp, edema, moisture, and appearance of surrounding skin; note any characteristics of any drainage.
2. Monitor site of impaired tissue integrity at least once daily for signs of infection. Determine whether patient is experiencing changes in sensation or pain. Pay attention to all high risk areas such as bony prominences, skin folds, and heels.
3. Monitor status of skin around the wound. Monitor patient’s skin care practices, noting type of soap or other cleansing agents used, temp of water, and frequency of cleansing.
4. Select a topical treatment that maintains a moist wound — healing environment but also allows absorption of exudate and filling of dead space.
5. Assess patient’s nutritional status; refer to nutritional consultation. | 1. Systematic inspection can identify possible problem areas early in infection.
2. Pain secondary to dressing change can be managed by interventions aimed at reducing trauma and other sources of wound pain.
3. Individualize the plan according to patient’s skin condition needs and preferences. Avoid harsh cleaning agents, hot water, extreme friction or force, and too frequent cleansing.
4. Choose dressings that provide moist environment, keep skin around wound dry and control exudate and eliminate dead space.
5. A good diet with nutritional foods and vitamins may help promote wound healing. | 1. Surrounding skin remained intact and w/o inflammation.
2. Wound did not have signs of added infection.
3. Educated patient on technique of cleansing and putting on dressing. Had her watch while I did it so she could understand. She stated she would try to do it herself when she is discharged.
4. Used wet to dry dressing, which was changed twice a day.
5. She was on a clear fluid diet but still has little appetite. Continued consultation with nutritionist before discharge would be beneficial. |

Subjective Data:
-Patient said the pain is worse when ambulating & turning
-She said she dreads physical therapy
-She said she wishes she did not have to be in this situation

Medical Diagnoses:
-Diabetes foot ulcer
-Diabetes Mellitus Type 2
-PVD
-Infection

Sample Adequate Nursing Care Plan (2 pages)
Work of 2nd Semester Junior Nursing Student

https://www.michigancenterfornursing.org/system/files/G-CFA%20Instructor%20Tab%206-2%20Handout_2_Sample_Adequate_Nursing_Care_Plan-R6.pdf
Typical Care Plans

<table>
<thead>
<tr>
<th>Care Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities Care Plan</td>
</tr>
<tr>
<td>Admission Care Plan</td>
</tr>
<tr>
<td>Adult Failure to Thrive Care Plan</td>
</tr>
<tr>
<td>Alcohol Withdrawal Care Plan</td>
</tr>
<tr>
<td>Allergic Rhinitis Care Plan</td>
</tr>
<tr>
<td>Altered Cardiac Output Care Plan</td>
</tr>
<tr>
<td>Amputation Care Plan</td>
</tr>
<tr>
<td>Anasarca Care Plan</td>
</tr>
<tr>
<td>Anemia Care Plan</td>
</tr>
<tr>
<td>Angina Care Plan</td>
</tr>
<tr>
<td>Anticoagulant Care Plan</td>
</tr>
<tr>
<td>Aphasia Care Plan</td>
</tr>
<tr>
<td>Arthritis Care Plan</td>
</tr>
<tr>
<td>Asthma Management Plan for School Nurse</td>
</tr>
<tr>
<td>Behavior Problem Care Plan</td>
</tr>
<tr>
<td>Benign Prostate Hypertrophy Care Plan</td>
</tr>
<tr>
<td>Breast Feeding Careplan</td>
</tr>
<tr>
<td>Cancer Care Plan</td>
</tr>
<tr>
<td>Cardiomegaly Care Plan</td>
</tr>
<tr>
<td>Cellulitis</td>
</tr>
<tr>
<td>Cerebral Palsy Care Plan</td>
</tr>
</tbody>
</table>

Paving the COWpath: Learning and visualizing clinical pathways from electronic health record data

Yiye Zhanga,\,*, Rema Padmanb, Nirav Patelc

aSchool of Information Systems Management, The H. John Heinz III College, Carnegie Mellon University, Pittsburgh, PA, United States
bThe H. John Heinz III College, Carnegie Mellon University, Pittsburgh, PA, United States
cTeresesai, McCann & Associates, P.C., Pittsburgh, PA, United States

\textbf{Fig. 1.} Practice-based clinical pathway development process.
Mining Clinical Pathways: Representation

• An event is a visit, with a purpose and sets of:
 • procedures,
 • medications: \{Angiotensin converting enzyme (ACE) inhibitors, Angiotensin receptor blockers (ARB), diuretics, and statins
 • diagnoses: \{CKD stage 1 to stage 5, AKI, hypertension, diabetes, end stage renal disease (ESRD)\}

• These events are abstracted into supernodes
 • each captures a unique combination of events associated with some visit

• Each patient then has a visit sequence, a time-ordered list of supernodes describing successive visits

• To support a two-step Markov analysis, aggregate visits into super pairs of two successive supernodes.
Visit History as a Markov Chain
Mining Clinical Pathways: Clustering

- Computer max of the length of common subsequences between each pair of visit sequences
- \(\text{dist}(x, y) = |x| + |y| - 2 \text{LCS}(x, y) \)
- hierarchic clustering into distinct subgroups (31, in their case)
Subgroup Clusters
clustering by trajectory, but these are the most common supernodes in the cluster

1,576 patients, 17,358 visits

<table>
<thead>
<tr>
<th>Subgroup</th>
<th># Patients</th>
<th>Visit content with the highest support</th>
<th>Drug Class</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>Office, CKD stage 3, diabetes, hypertension</td>
<td>–</td>
<td>0.54</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td></td>
<td>ACE</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td></td>
<td>ACE, ARB, diuretics, statins</td>
<td>0.78</td>
</tr>
<tr>
<td>4</td>
<td>122</td>
<td></td>
<td>ACE, diuretics, statins</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td></td>
<td>ACE, statins</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
<td>ARB</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td></td>
<td>ARB, diuretics</td>
<td>0.75</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td></td>
<td>ARB, statins</td>
<td>0.95</td>
</tr>
<tr>
<td>9</td>
<td>74</td>
<td></td>
<td>Diuretics</td>
<td>0.69</td>
</tr>
<tr>
<td>10</td>
<td>83</td>
<td></td>
<td>Diuretics, statins</td>
<td>0.84</td>
</tr>
<tr>
<td>11</td>
<td>75</td>
<td></td>
<td>Statins</td>
<td>0.63</td>
</tr>
<tr>
<td>12</td>
<td>158</td>
<td></td>
<td>–</td>
<td>0.52</td>
</tr>
<tr>
<td>13</td>
<td>29</td>
<td></td>
<td>ACE</td>
<td>0.72</td>
</tr>
<tr>
<td>14</td>
<td>66</td>
<td></td>
<td>ACE, diuretics, statins</td>
<td>0.77</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td></td>
<td>ACE, ARB, diuretics</td>
<td>0.86</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td></td>
<td>ACE, diuretics</td>
<td>0.69</td>
</tr>
<tr>
<td>17</td>
<td>26</td>
<td></td>
<td>ACE, statins</td>
<td>0.96</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td></td>
<td>ARB</td>
<td>0.93</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td></td>
<td>ARB, diuretics</td>
<td>0.95</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
<td>ARB, statins</td>
<td>0.95</td>
</tr>
<tr>
<td>21</td>
<td>86</td>
<td></td>
<td>Diuretics</td>
<td>0.57</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td></td>
<td>Diuretics, statins</td>
<td>0.59</td>
</tr>
<tr>
<td>23</td>
<td>68</td>
<td></td>
<td>Statins</td>
<td>0.71</td>
</tr>
<tr>
<td>24</td>
<td>90</td>
<td></td>
<td>ARB, diuretics, statins</td>
<td>0.67</td>
</tr>
<tr>
<td>25</td>
<td>38</td>
<td></td>
<td>ARB, diuretics, statins</td>
<td>0.6</td>
</tr>
<tr>
<td>26</td>
<td>18</td>
<td></td>
<td>ACE, diuretics</td>
<td>0.67</td>
</tr>
<tr>
<td>27</td>
<td>14</td>
<td></td>
<td>ACE, statins</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>69</td>
<td></td>
<td>Diuretics, statins</td>
<td>0.94</td>
</tr>
<tr>
<td>29</td>
<td>14</td>
<td></td>
<td>ACE, statins</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>Hospital, AKI, CKD stage 3</td>
<td>–</td>
<td>0.55</td>
</tr>
<tr>
<td>31</td>
<td>78</td>
<td>Deceased</td>
<td>–</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 5
Summary statistics across patient subgroups.
(Partial) Transition Matrix
(pathways depend on thresholds chosen)

![Transition Matrix Image]

Fig. 4. Extraction of clinical pathways using Markov chain transition matrix.
Transitions for Cluster 29

({CKD stage 4, hypertension}, {ACE, statins}) n=14 (!)

Fig. 7. Clinical pathway mined for subgroup 29.
Transitions for Cluster 29: interpreted, common
({CKD stage 4, hypertension}, {ACE, statins})

Fig. 8. Visualization of a clinical pathway for patients in subgroup 29. Yellow node: office visit, green node: hospitalization, blue: education visit, red: deceased, CKD4: CKD stage 4, HP: hypertension. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
How Useful is This?

• Many subgroups, with 10–158 samples
• Limited data about each visit
 • e.g., no labs, few diagnoses and medication classes
• Complex transition graphs need human interpretation
• Models what is done, not what should be done
 • (but this is a common problem)
Alternative Stories from Subgroup 4
(office, {CKD stage 3, diabetes, hypertension}) n=122

Fig. 10. Visualization of a sub-pathway for patients in subgroup 4. Yellow node: office visit, green node: hospitalization, red: deceased, C2/3: CKD stage 2/3, DH: diabetes and hypertension, DS: diuretics and statins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Visualization of a sub-pathway for patients in subgroup 4. Yellow node: office visit, green node: hospitalization, red: deceased, C3/4: CKD stage 3/4, DH: diabetes and hypertension, DS: diuretics and statins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Decision support from local data: Creating adaptive order menus from past clinician behavior

Jeffrey G. Klann, Peter Szolovits, Stephen M. Downs, Gunther Schadow

• Clinical Issues
 • back pain in the emergency department (n=9,228)
 • inpatient pregnancy (n=4,843)
 • hypertension in the Urgent Visit Clinic (n=1821)
 • altered mental state in the intensive care unit (n=1,546)

• 3 years of encounters from Regenstrief Clinic

• Data for each domain:
 • 40 most frequent orders (low granularity; e.g., drug, but not dose, for medications)
 • 10 most frequent co-occurring diagnoses
Modeling Clinician Behavior for Decision Support

- Wisdom of the Crowd
 - average behavior of many physicians is usually much better than any individual physician
- Like Amazon’s recommendation system: “people who bought this camera also bought this case”
 - too little context
 - inattention to transitive associations
- Automate learning of decision support rules
- Deal with more complex cases than what expert panels typically cover
- Bayesian Network model
 - Diagnoses
 - Possible orders
 - Evidence (from orders already completed)
- Tetrad’s “Greedy Equivalence Search” algorithm to build BN
A portion of the inpatient pregnancy networks. This figure shows the Markov blankets of C-Section Operative Note, Ext. UC Monitor, and Sitz Bath, three nodes with high AUC in Table 4. These three Markov Blankets comprise the majority of the total graph, and the graph forms one single connected component - indicating strong relationships between all nodes in this network. Orders are purple; problem/complaints are yellow. Node/label size is proportional to AUC, and edge weight is an approximation of the strength of relationship. Notice the highly-correlated clusters, e.g. Sitz bath and other postpartum treatments (cold pack, ice chips, lanolin, etc).
MICU, Clinic, and ED Networks

MICUNode/label size is proportional to AUC, and edge weight is an approximation of the strength of the relationship. Here, notice the logical clusters and intuitively correct relationships.
Iterative Treatment Suggestion

- Update BN probabilities of possible orders that have not been done
- Present them in descending probability order to clinicians
- Iterate until user ends session

An example Bayesian Network (left), the Conditional Probability Tables associated with it (middle), and the posterior probabilities given the evidence of ‘Abdominal Pain’ (right).
ITS Example

Fig. 2. A prototype implementation of Iterative Treatment Suggestions (ITS). The panel shows the current evidence (labeled 0 or 1) and the possible orders in descending probability order. As orders and diagnoses are placed (the toggle button), the evidence is revised and the posterior probability of possible orders given the network is recalculated.
ITS Evaluation by Simulation from Models
Actual context of diagnoses, orders placed; use models to predict next orders

- AUC of action included in recommendations
- Position on recommendation list
- Compare to Association Rule Mining

<table>
<thead>
<tr>
<th>Name</th>
<th>AUC</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitz Bath</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>Cold Pack</td>
<td>1.00</td>
<td>1.1</td>
</tr>
<tr>
<td>Naloxone Inj</td>
<td>1.00</td>
<td>1.2</td>
</tr>
<tr>
<td>Lung Exercise</td>
<td>0.99</td>
<td>1.1</td>
</tr>
<tr>
<td>Morphine (PCA)</td>
<td>0.99</td>
<td>2.0</td>
</tr>
<tr>
<td>Ext. UC Monitor</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>0.98</td>
<td>1.1</td>
</tr>
<tr>
<td>Ext. FHT Monitor</td>
<td>0.97</td>
<td>1.1</td>
</tr>
<tr>
<td>Docusate Na</td>
<td>0.96</td>
<td>1.2</td>
</tr>
<tr>
<td>I&O Monitoring</td>
<td>0.94</td>
<td>1.2</td>
</tr>
<tr>
<td>NPO</td>
<td>0.73</td>
<td>1.5</td>
</tr>
<tr>
<td>IV Lock</td>
<td>0.73</td>
<td>9.8</td>
</tr>
<tr>
<td>Syphilis Screen</td>
<td>0.73</td>
<td>9.5</td>
</tr>
<tr>
<td>Ice Chips</td>
<td>0.72</td>
<td>15.8</td>
</tr>
<tr>
<td>IV Fluids</td>
<td>0.71</td>
<td>1.1</td>
</tr>
<tr>
<td>Drugs Urine Test</td>
<td>0.71</td>
<td>27.8</td>
</tr>
<tr>
<td>Oxytocin Protocol</td>
<td>0.68</td>
<td>23.8</td>
</tr>
<tr>
<td>Type and Screen</td>
<td>0.65</td>
<td>13.2</td>
</tr>
<tr>
<td>Lortab 5/500</td>
<td>0.60</td>
<td>2.9</td>
</tr>
<tr>
<td>Morphine</td>
<td>0.50</td>
<td>22.7</td>
</tr>
</tbody>
</table>

For each domain, the weighted average position in menu at time of order, where 1 is the top suggestion, for the BN and ARM approaches. Weighting is by frequency of order. Also shows the weighted and unweighted difference in average list length (ARM-BN).
Fig. 3. The average position in the list at the time of order vs. the frequency rank of the order in the test sets.
Analysis of clinical decision support system malfunctions: a case series and survey

Adam Wright,¹,²,³,* Thu-Trang T Hickman,¹ Dustin McEvoy,³ Skye Aaron,¹ Angela Ai,¹ Jan Marie Andersen,¹ Salman Hussain,¹,⁴ Rachel Ramoni,²,⁵ Julie Fiskio,¹ Dean F Sittig,⁶ and David W Bates¹,²,³

ABSTRACT

Objective To illustrate ways in which clinical decision support systems (CDSSs) malfunction and identify patterns of such malfunctions.

Materials and Methods We identified and investigated several CDSS malfunctions at Brigham and Women’s Hospital and present them as a case series. We also conducted a preliminary survey of Chief Medical Information Officers to assess the frequency of such malfunctions.

Results We identified four CDSS malfunctions at Brigham and Women’s Hospital: (1) an alert for monitoring thyroid function in patients receiving amiodarone stopped working when an internal identifier for amiodarone was changed in another system; (2) an alert for lead screening for children stopped working when the rule was inadvertently edited; (3) a software upgrade of the electronic health record software caused numerous spurious alerts to fire; and (4) a malfunction in an external drug classification system caused an alert to inappropriately suggest antiplatelet drugs, such as aspirin, for patients already taking one. We found that 93% of the Chief Medical Information Officers who responded to our survey had experienced at least one CDSS malfunction, and two-thirds experienced malfunctions at least annually.

Discussion CDSS malfunctions are widespread and often persist for long periods. The failure of alerts to fire is particularly difficult to detect. A range of causes, including changes in codes and fields, software upgrades, inadvertent disabling or editing of rules, and malfunctions of external systems commonly contribute to CDSS malfunctions, and current approaches for preventing and detecting such malfunctions are inadequate.

Conclusion CDSS malfunctions occur commonly and often go undetected. Better methods are needed to prevent and detect these malfunctions.
During the demonstration, the alert unexpectedly failed to fire for several test patients that had been on amiodarone for more than a year and had never had a TSH test. … we discovered that, in November 2009, the LMR’s internal code for amiodarone had been changed from 40 to 7099, but the rule logic in the system was never updated to reflect this change.
Figure 3: Firing rate of four alerts at Brigham and Women’s Hospital over a 5-year period (weekend days are represented by darker dots, and weekdays are represented by lighter dots), with anomalies indicated (superimposed horizontal bars show anomalous periods).
Amiodarone

• Because the alert does not fire until a patient has been on amiodarone for at least a year, there was no observable effect for the first year, and then the rate of alerting subtly fell as some patients were taken off amiodarone (with the old code 40) and others were started on amiodarone (with the new internal LMR code 7099). The abrupt increase in the alert firing rate for the amiodarone/TSH test alert at the end of the blue bar in Figure 3 represents when the alert logic was corrected.
Lead Screening

• No similar discontinuity for screening 1, 3, and 4-year-olds
• “The audit log suggested that several changes to the lead screening test alert rule were made around the times when the alert stopped firing and then restarted; however, because of a software issue in the audit logging routine, it was not possible to reconstruct the sequence of rule changes or the specific dates when individual changes occurred.”
• Apparently, inadvertent addition of two incomplete clauses to the rule (gender and smoking status) caused it never to fire.
• “176 708 lead screening test alerts were not generated during the 850-day period”
Chlamydia Screen

• Code “clean-up” led to accidental over-firing of an irrelevant rule

• “… record of a healthy 2-month-old boy that contains numerous duplicate reminders, including suggestions that the physician order mammograms, Pap smears, pneumococcal vaccination, and cholesterol screening, and suggestions that the patient be started on several medications, all of which should not apply to this young, healthy, male patient.

• “the alert fired 5950 times during the period that the malfunction occurred compared with the 332 times it was expected to fire”

• Can we automate such monitoring?
Change-Point Detection to Monitor Rule Firings

- Dynamic Linear Model with Seasonality

The DLM models a sequence of real-valued observations \(\{y_t: t = 1, 2, \cdots\} \) using a sequence of real-valued hidden state vectors \(\{x_t: t = 1, 2, \cdots\} \) of dimension \(d \). The dynamics of the model is captured by:

\[
y_t = F x_t + v, \quad v \sim N(0, V), \quad x_t = G x_{t-1} + w, \quad w \sim N(0, W).
\]

(1)

where \(G \) is a transition matrix that models the change in the hidden state over time, and \(F \) is an emission matrix that reflects the expression of observations \(y_t \) given the current \(x_t \). Both transition and emission are stochastic and corrupted by a zero-mean Gaussian noise (\(w \) and \(v \)) with covariance \(W \) and \(V \). At the beginning \((t = 0) \), we assume the hidden state \(x_0 \sim N(m_0, C_0) \), where \(m_0 \) and \(C_0 \) is the mean and covariance matrix of \(x_0 \) respectively.
Seasonality

• Decompose x_t into multiple parts:
 • a baseline (u_t) defining the mean
 • a slope (l_t) defining the trend of the mean
 • a seasonal component (s_t) defining the change in the mean for each phase (a day in a week) of a seasonal cycle (a week); $p = \text{length of cycle}$
 • $[t]_p = (t + p - 1) \mod p + 1$ that maps the time to its corresponding phase

$$x_t = \left(u_t, l_t, s([t]_p), s([t-1]_p), \ldots, s([t-p+2]_p) \right)^T.$$
Multi-Process Dynamic Linear Model

• Multiple DLMs represent different various normal and abnormal behaviors
• Let $M_{t}^{(i)}$ be a random variable indicating whether model i is driving the time series at time t and generating y_t, and M_t be a vector composed of $M_t^{(i)}$ for all i.
• $Y_t = \{y_u: u = 1, 2, ..., t\}$ is the time series of observations up to t
• Probability that i drives the time series before observation y_t is $p(M_t^{(i)} = 1| Y_{t-1})$, and after is $p(M_t^{(i)} = 1| Y_t)$. This can help detect change
• Three basic models
 • MS (stable)
 • MAO (additive outlier)
 • MLS (level shift)
• $p(M_t^{(MLS)} = 1| Y_{t+1})$ is considered the change point score
Fig. 1.
Applying the MPDLM method to a time series. The top graph shows the observations. The remaining graphs show the posterior probabilities of the three models (MS, MAO, MLS). There is a one-time-unit delay for the probability outputs.
Estimating DLM Parameters is Challenging

- No labeled data
- Use non-informative priors for different behaviors (even though MS is probably most common)
- Hypothesize hyper-parameters that estimate V and W for the different models
- Evaluated on both real data and various simulations
 - Real: 14 rules with ≥ 1 change points (22 total)
- Delay vs. False Positive Rate; AMOC is area under that curve
Fig. 2. AMOC curves on real data.

The Mean AUC-AMOC on Real and Simulated Data.

<table>
<thead>
<tr>
<th>data</th>
<th>RND</th>
<th>SCP</th>
<th>MW</th>
<th>Pois</th>
<th>DLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>real</td>
<td>1.88</td>
<td>0.98</td>
<td>1.16</td>
<td>0.62</td>
<td>0.19***</td>
</tr>
<tr>
<td>2/1</td>
<td>2.37</td>
<td>1.26</td>
<td>1.21</td>
<td>1.19</td>
<td>0.28***</td>
</tr>
<tr>
<td>3/2</td>
<td>1.97</td>
<td>1.86</td>
<td>1.36</td>
<td>1.88</td>
<td>0.68**</td>
</tr>
<tr>
<td>6/5</td>
<td>2.01</td>
<td>2.24</td>
<td>1.74</td>
<td>2.26</td>
<td>1.88</td>
</tr>
<tr>
<td>1/2</td>
<td>2.36</td>
<td>1.22</td>
<td>1.74</td>
<td>1.19</td>
<td>0.50***</td>
</tr>
<tr>
<td>2/3</td>
<td>2.16</td>
<td>1.67</td>
<td>1.86</td>
<td>1.66</td>
<td>0.94**</td>
</tr>
<tr>
<td>5/6</td>
<td>2.19</td>
<td>2.06</td>
<td>2.33</td>
<td>2.05</td>
<td>2.17</td>
</tr>
</tbody>
</table>
Other Workflow Issues

- Alerting
 - Escalation of alerts on non-response
 - BIDMC study of unread messages in Patient Portal (only ~3%)
- Importance of Communication

- Integration of all data sources
 - Failure of Google Health, Microsoft Health Vault, …
Lab Alerts

• Beth Israel experience, 1994
 • rising creatinine levels while taking nephrotoxic or renally excreted drugs
 • 21.6 hour reduction in reaction time
 • risk or renal impairment reduced to 0.45 of pre-intervention level
 • 44% of docs found them helpful, 28% found them annoying, 65% wanted them continued
The communication space

- is the largest part of the health system’s information space
- contains a substantial proportion of the health system information ‘pathology’
- is largely ignored in our informatics thinking
- is where most data is acquired and presented
How big is the communication space?

- Covell et al. (1985): 50% info requests are to colleagues, 26% personal notes
- Tang et al (1996): talk is 60% in clinic
- Coiera and Tombs (1996,1998): 100% of non-patient record information
- Safran et al. (1998): ~50% face to face, EMR ~10%, e/v-mail and paper remainder
What happens in the communication space?

- Bhasale et al. (1998): contributes to ~50% adverse events in primary care
- Coiera and Tombs (1998): interrupt-driven workplace, poor systems and poor practice

ER communication study

• Medical Subject #4
 • 3 hrs 15 min observation
 • 86% time in ‘talk’
 • 31% time taken up with 28 interruptions
 • 25% multi-tasking with 2 or more conversations
 • 87 % face to face, phone, pager
 • 13 % computer, forms, patient notes
Implications

• Clinicians already seem to receive too many messages resulting in:
 • interruption of tasks
 • fragmentation of time, potentially leading to inefficiency
 • potential for forgetting, resulting in errors
Communication options

• We can introduce new:
 – *Channels*, e.g., v-mail
 – *Types of message*, e.g., alert
 – *Communication policies*, e.g., prohibit sending an e-mail organisation-wide
 – *Communication services*, e.g., role-based call forwarding
 – *Agents* creating or receiving messages, e.g., web-bots for info retrieval
 – *Common ground* between agents, e.g., train team members

• Synchronous:
 • face to face, pager, phone
 • generate an interrupt to receiver

• Asynchronous:
 • *post-it notes, e-mail, v-mail*
 • receiver elects moment to read
Automated messages

• **Notification** - that an event has occurred:
 – **Alert** (push) - draws attention to an event determined to be important, e.g., abnormal test result, failure to act
 – **Retrieve** (pull) - return with requested data
 – **Acknowledgment** (push or pull) - that a request has been seen, read, or acted upon
Notification systems

• Channel:
 • typically asynchronous, e.g., e-mail, pager, fax
 • synchronous modes feasible

• Message:
 • existing messages, e.g., lab alerts
 • new messages, e.g., task acknowledgment
Effects of notification systems

- *Channel effect*: shift existing events from synchronous to asynchronous domain, reducing interruption
- *Message effect*: generate new types of events in the asynchronous domain, increasing message load, demanding time, and creating a filtering problem
- potential to either harm or help
How to keep from dropping the ball?

• Coordination
 • CSP, where some of the processes are people
 • Checking that others are “on track”
• Resource allocation
• Design of rational human-institution-technology systems
Workflow Engine
≈ discrete-event simulator

- Do x
- Ask z to do y
- At t+14, check if y is done
 - If yes, inform x; else do …
Google Health: A Personal Health Record

• In 2008, the service underwent a two-month pilot test with 1,600 patients of The Cleveland Clinic
• Starting on May 20, 2008, Google Health was released to the general public as a service in beta test stage
• 2011 Google announced it was retiring Google Health

• Partners: Allscripts, Anvita Health, The Beth Israel Deaconess Medical Center, Blue Cross Blue Shield of Massachusetts, The Cleveland Clinic, CVS Caremark, Drugs.com, Healthgrades, Longs Drugs, Medco Health Solutions, Quest Diagnostics, RxAmerica, and Walgreens
• Other than these partners, no facilities to enter data automatically
• No facilities at all to allow/encourage clinicians to look at these data
 • Missing integration with hospital/clinic EHRs

• Also see “Guardian Angel”, http://ga.org