
Machine	Learning	for	Healthcare
HST.956,	6.S897

Lecture	24:	Robustness	to	dataset	shift

David	Sontag

Course	announcements
• Please	complete	the	subject	evaluation	for	this	class
https://registrar.mit.edu/classes-grades-
evaluations/subject-evaluation

• Projects
– Poster	session	Tuesday,	May	14th from	5-7pm	in	34-401
– Send	posters	to	print	by	Monday,	 9am!
– Final	report	due	end	of	day,	Thursday	May	16th

• Grading
– PS5	&	PS6	will	be	graded	by	early	next	week		
– Please	let	us	know	immediately	 if	you	see	any	mistakes	
with	grading

Machine	learning	is	brittle

• So,	you	train	your	ML	model	and	do	a	
prospective	evaluation	at	your	institution	à
all	looks	good!

• What	could	go	wrong	at	time	of	deployment?
– Adversarial	perturbations	of	inputs
– Natural	changes	in	the	data	(e.g.	from	transferring	
to	a	new	place,	or	non-stationarity)

Machine	learning	breaks	when
test	distribution	≠	train	distribution

Machine	learning	is	brittle:	adversarial	
perturbations

Input: Output:

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

[Krizhevsky,	Sutskever,	Hinton.	“ImageNet	Classification	with	Deep	Convolutional	
Neural	Networks”,	NIPS	’12]

Consider	a	deep	neural	network	used	for	image	classification

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

Correctly	
classified	as	

a	Dog

Machine	learning	is	brittle:	adversarial	
perturbations

[Szegedy et	al.,	“Intriguing	properties	of	neural	networks”,	ICLR	2014]

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

Original	
image

Machine	learning	is	brittle:	adversarial	
perturbations

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

+

Noise	(not	
random)

[Szegedy et	al.,	“Intriguing	properties	of	neural	networks”,	ICLR	2014]

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

Machine	learning	is	brittle:	adversarial	
perturbations

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

+

Classified	
as	Ostrich!

=

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

Original	
image

Noise	(not	
random)

[Szegedy et	al.,	“Intriguing	properties	of	neural	networks”,	ICLR	2014]

Machine	learning	is	brittle:	adversarial	
perturbations

Figure 1: Characteristic results of adversarial manipulation. Each clean image represents the natural
image to which the model assigns the highest probability for the given diagnosis. The percentage
displayed on the bottom left of each image represents the probability that the model assigns that
image of being diseased. Green = Model is correct on that image. Red = Model is incorrect.

Florida dermatologist from [56] could sidestep an insurance company’s image-based fraud detector
and continue to defraud the system in perpetuity.

Adversarial examples in radiology. Thoracic radiology images (typically CT scans, which is a 3D
application of X-Ray technology) are also often used to measure tumor burden, a common secondary
endpoint of cancer therapy response[51]. To foster more rapid and more universally standardized
clinical trials, the FDA might consider requiring that trial endpoints, such as tumor burden in chest
imaging, be evaluated by a deep learning system such as the one from Section 4. By applying
undetectable adversarial perturbations to the images, a company running a trial could effectively
guarantee a positive trial result with respect to this endpoint, even if images are subsequently released
to the public for inspection. In addition, chest X-rays provide a common screening test for dozens of
diseases, and a positive chest X-ray result is often used to justify more heavily reimbursed procedures
such as biopsies, CT or MR imaging, or surgical resection. As such, one could imagine many
scenarios arising around chest X-rays that are directly analogous to the melanoma detection situation
described above.

Adversarial examples in ophthalmology. As described in Section 3, providers and pharmaceutical
companies are not the only organizations that could be incentivized to employ adversarial manipula-
tion. Often, the entities who pay for healthcare (such as private or public insurers) wish to curtail the
utilization rates of certain procedures to reduce costs. However, there are often guidelines from gov-
ernment agencies (such as the Centers for Medicare and Medicaid Services) that specify diagnostic
criteria which if present dictate that certain procedures must be covered. One such criterion could be
that any patient with a confirmed diabetic retinopathy diagnosis from a deep learning system such as
the one from Section 4 must have the resulting vitrectomy surgery covered by their insurer. Even
though the insurer has no ability to control the policy, they could still control the rate of surgeries
by applying adversarial noise to mildly positive images, reducing the number procedures. On the
other end of the spectrum, an ophthalmologist could affix a universal adversarial patch to the lens of

7

[Finlayson	et	al.,	“Adversarial	Attacks	Against	Medical	Deep	Learning	Systems”,	
Arxiv 1804.05296,	2018]

Top	100	lab	measurements over	time

Time	(in	months,	from	1/2005	up	to	1/2014)

La
bs

[Figure	credit:	Narges Razavian]

→	Significance	of	features	may	change	over	time
(Figure	from	Lecture	5)

Machine	learning	is	brittle:	natural	
changes	in	the	data

Machine	learning	is	brittle:	natural	
changes	in	the	data

Model

?

[Figure	adopted	from	Jen	Gong	and	Tristan	Naumann]

MGH UCSF

Outline	for	lecture

1. Building	population-level	checks	into	
deployment/transfer

2. Machine	learning	in	anticipation	of	dataset	
shift
– Transfer	learning
– Defenses	against	adversarial	attacks

“Table	1”

Copyright 2016 American Medical Association. All rights reserved.

these hospitalizations, 6549 (13.9%) carried a diagnosis of heart
failure in any position and 1214 (2.6%) carried a principal di-
agnosis of heart failure (Table 1).

The inclusion of heart failure on the problem list (algo-
rithm 1) was associated with a sensitivity of 0.52 and a PPV of
0.96 for identification of heart failure based on the discharge
diagnosis code criterion standard in the validation set (Table 2).
Heart failure on the problem list had a sensitivity of 0.40 and
a PPV of 0.96 in the validation set using the criterion stan-
dard of sampling with physician medical record review. Algo-
rithm 2, defined as the presence of heart failure on the prob-
lem list, an inpatient loop diuretic, or a BNP level of 500 pg/mL
or higher, was associated with sensitivities of 0.84 and 0.77
and PPVs of 0.58 and 0.64 compared with discharge diagno-
sis and physician review criterion standards in the validation
set, respectively.

The third algorithm, in which heart failure was classified
using logistic regression, included 30 structured data ele-
ments in the model. Variables that had an association with heart
failure included heart failure on the problem list, any prior di-
agnosis of heart failure, inpatient diuretics, outpatient heart
failure β-blocker use, and high BNP level (eTable 1 in the Supple-
ment). This algorithm had an AUC of 0.953 in validation, a sen-
sitivity of 0.76, and a PPV of 0.8 (Table 2 and Figure 1). In vali-
dation using the physician review criterion standard, the
algorithm had a sensitivity of 0.68 with a PPV of 0.90 (Table 2).

The fourth algorithm, which used a machine-learning ap-
proach on free text, included 1118 elements in the final model.
The top prognostic factors in the algorithm were all clinically
relevant and included the terms chf, hf, nyha, failure, conges-
tive, and Lasix (eTable 2 in the Supplement). This model had
an AUC of 0.969 in validation and a sensitivity of 0.84 with a
PPV of 0.80 in the validation set using the discharge diagno-
sis criterion standard.

The fifth algorithm used a machine-learning approach to
identify 947 unstructured and structured data elements in the
final model. The top prognostic factor for this model was heart
failure in the problem list, followed by mention of chf and hf
in free text (eTable 3 in the Supplement). This algorithm had
an AUC of 0.974. The algorithm had a sensitivity of 0.86 with
a PPV of 0.80 using the discharge diagnosis and a sensitivity
of 0.83 with a PPV of 0.90 using the physician review.

Of 1631 hospitalizations for a principal or secondary diag-
nosis of heart failure in the validation set, 195 (12.0%) did not
have a prior echocardiogram. Of these hospitalizations, 66
(33.8%) had heart failure listed on the problem list (algorithm
1). Algorithm 3 increased the number of these patients iden-
tified as having heart failure by 34, whereas algorithms 2, 4,
and 5 increased the number of patients identified by between
69 and 74 over algorithm 1 (Figure 2). The PPV for identifica-
tion of heart failure among patients without an echocardio-
gram was 0.92, 0.30, 0.71, 0.71, and 0.67 for algorithms
1 through 5, respectively. Among 430 hospitalizations for a di-
agnosis of heart failure and a known EF of 40% or less, pa-
tients in 109 hospitalizations (25.3%) were not discharged with
an ACE inhibitor or ARB, whereas 91 (21.2%) were not dis-
charged with an evidence-based β-blocker. With the use of the
problem list alone, heart failure was classified in 76 heart fail-

Table 1. Characteristics of 47 119 Hospitalized Patients

Characteristic Findinga

Age, mean (SE), y 60.9 (18.15)

Female 23 952 (50.8)

Black/African American race 5258 (11.2)

Hispanic/Latino ethnicity 3667 (7.8)

Medicaid 8303 (17.6)

Heart failure in problem list 3630 (7.7)

Prior diagnosis of any heart failure 2985 (6.3)

Prior diagnosis of primary heart failure 615 (1.3)

Prior echocardiography 15 938 (33.8)

Loop diuretics

Inpatient 6837 (14.5)

Outpatient 6427 (13.6)

ACE inhibitors or ARB

Inpatient 13 166 (27.9)

Outpatient 14 797 (31.4)

β-Blockers

Inpatient 19 748 (41.9)

Outpatient 14 870 (31.6)

Heart failure with β-blockers

Inpatient 6310 (13.4)

Outpatient 8644 (18.4)

Blood pressure, mean (SE), mm Hg

Systolic 123.3 (18.3)

Diastolic 67.8 (12.8)

Creatinine, mean (SE), mg/dL 1.01 (1.1)

Sodium, mean (SE), mEq/L 138.4 (3.7)

BNP, pg/mL

<500 1721 (23.4)

500-999 878 (12.0)

1000-4999 2498 (34.0)

5000-9999 931 (12.7)

10 000-19 999 652 (8.9)

≥20 000 667 (9.1)

Blood pressure

Any systolic 46 982 (99.7)

Any diastolic 46 982 (99.7)

Any creatinine 46 598 (98.9)

Any sodium 46 613 (98.9)

Any BNP 7347 (15.6)

Problem list

Acute MI 952 (2.0)

Atherosclerosis 6147 (13.0)

Final discharge diagnosis of heart failure

Any diagnosis 6549 (13.9)

Principal diagnosis 1214 (2.6)

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor
blocker; BNP, brain natriuretic peptide; MI, myocardial infarction.
SI conversion factors: to convert creatinine to micromoles per liter, multiply by
88.4; sodium to millimoles per liter, multiply by 1; and BNP to nanograms per
liter, multiply by 1.
a Data are presented as number (percentage) of hospitalized patients unless

otherwise indicated.

Heart Failure Case Identification From Electronic Health Record Data Original Investigation Research

jamacardiology.com (Reprinted) JAMA Cardiology December 2016 Volume 1, Number 9 1017

Copyright 2016 American Medical Association. All rights reserved.

Downloaded From: by David Sontag on 03/01/2018

Copyright 2016 American Medical Association. All rights reserved.

these hospitalizations, 6549 (13.9%) carried a diagnosis of heart
failure in any position and 1214 (2.6%) carried a principal di-
agnosis of heart failure (Table 1).

The inclusion of heart failure on the problem list (algo-
rithm 1) was associated with a sensitivity of 0.52 and a PPV of
0.96 for identification of heart failure based on the discharge
diagnosis code criterion standard in the validation set (Table 2).
Heart failure on the problem list had a sensitivity of 0.40 and
a PPV of 0.96 in the validation set using the criterion stan-
dard of sampling with physician medical record review. Algo-
rithm 2, defined as the presence of heart failure on the prob-
lem list, an inpatient loop diuretic, or a BNP level of 500 pg/mL
or higher, was associated with sensitivities of 0.84 and 0.77
and PPVs of 0.58 and 0.64 compared with discharge diagno-
sis and physician review criterion standards in the validation
set, respectively.

The third algorithm, in which heart failure was classified
using logistic regression, included 30 structured data ele-
ments in the model. Variables that had an association with heart
failure included heart failure on the problem list, any prior di-
agnosis of heart failure, inpatient diuretics, outpatient heart
failure β-blocker use, and high BNP level (eTable 1 in the Supple-
ment). This algorithm had an AUC of 0.953 in validation, a sen-
sitivity of 0.76, and a PPV of 0.8 (Table 2 and Figure 1). In vali-
dation using the physician review criterion standard, the
algorithm had a sensitivity of 0.68 with a PPV of 0.90 (Table 2).

The fourth algorithm, which used a machine-learning ap-
proach on free text, included 1118 elements in the final model.
The top prognostic factors in the algorithm were all clinically
relevant and included the terms chf, hf, nyha, failure, conges-
tive, and Lasix (eTable 2 in the Supplement). This model had
an AUC of 0.969 in validation and a sensitivity of 0.84 with a
PPV of 0.80 in the validation set using the discharge diagno-
sis criterion standard.

The fifth algorithm used a machine-learning approach to
identify 947 unstructured and structured data elements in the
final model. The top prognostic factor for this model was heart
failure in the problem list, followed by mention of chf and hf
in free text (eTable 3 in the Supplement). This algorithm had
an AUC of 0.974. The algorithm had a sensitivity of 0.86 with
a PPV of 0.80 using the discharge diagnosis and a sensitivity
of 0.83 with a PPV of 0.90 using the physician review.

Of 1631 hospitalizations for a principal or secondary diag-
nosis of heart failure in the validation set, 195 (12.0%) did not
have a prior echocardiogram. Of these hospitalizations, 66
(33.8%) had heart failure listed on the problem list (algorithm
1). Algorithm 3 increased the number of these patients iden-
tified as having heart failure by 34, whereas algorithms 2, 4,
and 5 increased the number of patients identified by between
69 and 74 over algorithm 1 (Figure 2). The PPV for identifica-
tion of heart failure among patients without an echocardio-
gram was 0.92, 0.30, 0.71, 0.71, and 0.67 for algorithms
1 through 5, respectively. Among 430 hospitalizations for a di-
agnosis of heart failure and a known EF of 40% or less, pa-
tients in 109 hospitalizations (25.3%) were not discharged with
an ACE inhibitor or ARB, whereas 91 (21.2%) were not dis-
charged with an evidence-based β-blocker. With the use of the
problem list alone, heart failure was classified in 76 heart fail-

Table 1. Characteristics of 47 119 Hospitalized Patients

Characteristic Findinga

Age, mean (SE), y 60.9 (18.15)

Female 23 952 (50.8)

Black/African American race 5258 (11.2)

Hispanic/Latino ethnicity 3667 (7.8)

Medicaid 8303 (17.6)

Heart failure in problem list 3630 (7.7)

Prior diagnosis of any heart failure 2985 (6.3)

Prior diagnosis of primary heart failure 615 (1.3)

Prior echocardiography 15 938 (33.8)

Loop diuretics

Inpatient 6837 (14.5)

Outpatient 6427 (13.6)

ACE inhibitors or ARB

Inpatient 13 166 (27.9)

Outpatient 14 797 (31.4)

β-Blockers

Inpatient 19 748 (41.9)

Outpatient 14 870 (31.6)

Heart failure with β-blockers

Inpatient 6310 (13.4)

Outpatient 8644 (18.4)

Blood pressure, mean (SE), mm Hg

Systolic 123.3 (18.3)

Diastolic 67.8 (12.8)

Creatinine, mean (SE), mg/dL 1.01 (1.1)

Sodium, mean (SE), mEq/L 138.4 (3.7)

BNP, pg/mL

<500 1721 (23.4)

500-999 878 (12.0)

1000-4999 2498 (34.0)

5000-9999 931 (12.7)

10 000-19 999 652 (8.9)

≥20 000 667 (9.1)

Blood pressure

Any systolic 46 982 (99.7)

Any diastolic 46 982 (99.7)

Any creatinine 46 598 (98.9)

Any sodium 46 613 (98.9)

Any BNP 7347 (15.6)

Problem list

Acute MI 952 (2.0)

Atherosclerosis 6147 (13.0)

Final discharge diagnosis of heart failure

Any diagnosis 6549 (13.9)

Principal diagnosis 1214 (2.6)

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor
blocker; BNP, brain natriuretic peptide; MI, myocardial infarction.
SI conversion factors: to convert creatinine to micromoles per liter, multiply by
88.4; sodium to millimoles per liter, multiply by 1; and BNP to nanograms per
liter, multiply by 1.
a Data are presented as number (percentage) of hospitalized patients unless

otherwise indicated.

Heart Failure Case Identification From Electronic Health Record Data Original Investigation Research

jamacardiology.com (Reprinted) JAMA Cardiology December 2016 Volume 1, Number 9 1017

Copyright 2016 American Medical Association. All rights reserved.

Downloaded From: by David Sontag on 03/01/2018

[Blecker et	al.,	Comparison	of	Approaches	for	Heart	Failure	Case	Identification	From	Electronic	Health	
Record	Data,	JAMA	Cardiology	2016]

Datasheets for Datasets

Timnit Gebru⇤1, Jamie Morgenstern2, Briana Vecchione3, Jennifer Wortman Vaughan4,
Hanna Wallach4, Hal Daumé III4,5, and Kate Crawford4,6

1Google
2Georgia Institute of Technology

3Cornell University
4Microsoft Research

5University of Maryland
6AI Now Institute

April 16, 2019

Abstract

The machine learning community currently has no standardized process for documenting
datasets. To address this gap, we propose datasheets for datasets. In the electronics industry,
every component, no matter how simple or complex, is accompanied with a datasheet that
describes its operating characteristics, test results, recommended uses, and other information.
By analogy, we propose that every dataset be accompanied with a datasheet that documents
its motivation, composition, collection process, recommended uses, and so on. Datasheets for
datasets will facilitate better communication between dataset creators and dataset consumers,
and encourage the machine learning community to prioritize transparency and accountability.

1 Introduction
Data plays a critical role in machine learning. Every machine learning model is trained and evalu-
ated using datasets, and the characteristics of these datasets will fundamentally influence a model’s
behavior. A model is unlikely to perform well in the wild if its deployment context doesn’t match
its training or evaluation datasets, or if these datasets reflect unwanted biases. Mismatches like this
can have especially severe consequences when machine learning is used in high-stakes domains
such as criminal justice [2, 20, 44], hiring [29], critical infrastructure [10, 35], or finance [28]. And
even in other domains, mismatches may lead to loss of revenue or public relations setbacks.

Of particular concern are recent examples showing that machine learning models can reproduce
or amplify unwanted societal biases reflected in datasets. Much like a faulty capacitor in a circuit,

⇤Much of this research was conducted while Gebru, Morgenstern, and Vecchione were at Microsoft.

1

ar
X

iv
:1

80
3.

09
01

0v
4

 [c
s.D

B]
 1

4
A

pr
 2

01
9

[Gebru et	al.,	arXiv:1803.09010,	2019]

A Database for Studying Face Recognition in Unconstrained Environments Labeled Faces in the Wild

Motivation
For what purpose was the dataset created? Was there a specific
task in mind? Was there a specific gap that needed to be filled? Please
provide a description.
Labeled Faces in the Wild was created to provide images that
can be used to study face recognition in the unconstrained setting
where image characteristics (such as pose, illumination, resolu-
tion, focus), subject demographic makeup (such as age, gender,
race) or appearance (such as hairstyle, makeup, clothing) cannot
be controlled. The dataset was created for the specific task of pair
matching: given a pair of images each containing a face, deter-
mine whether or not the images are of the same person.1

Who created this dataset (e.g., which team, research group) and on
behalf of which entity (e.g., company, institution, organization)?
The initial version of the dataset was created by Gary B. Huang,
Manu Ramesh, Tamara Berg, and Erik Learned-Miller, most
of whom were researchers at the University of Massachusetts
Amherst at the time of the dataset’s release in 2007.

Who funded the creation of the dataset? If there is an associated grant,
please provide the name of the grantor and the grant name and number.
The construction of the LFW database was supported by a United
States National Science Foundation CAREER Award.

Any other comments?

Composition

What do the instances that comprise the dataset represent (e.g., doc-
uments, photos, people, countries)? Are there multiple types of in-
stances (e.g., movies, users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description.
Each instance is a pair of images labeled with the name of the
person in the image. Some images contain more than one face.
The labeled face is the one containing the central pixel of the
image—other faces should be ignored as “background”.

How many instances are there in total (of each type, if appropriate)?
The dataset consists of 13,233 face images in total of 5749 unique
individuals. 1680 of these subjects have two or more images and
4069 have single ones.

Does the dataset contain all possible instances or is it a sample (not
necessarily random) of instances from a larger set? If the dataset is
a sample, then what is the larger set? Is the sample representative of the
larger set (e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover a more diverse range of
instances, because instances were withheld or unavailable).

1All information in this datasheet is taken from one of five sources. Any errors
that were introduced from these sources are our fault.

Original paper: http://www.cs.cornell.edu/people/pabo/
movie-review-data/; LFW survey: http://vis-www.cs.umass.
edu/lfw/lfw.pdf; Paper measuring LFW demographic characteris-
tics : http://biometrics.cse.msu.edu/Publications/Face/HanJain
UnconstrainedAgeGenderRaceEstimation MSUTechReport2014.pdf;
LFW website: http://vis-www.cs.umass.edu/lfw/.

The dataset does not contain all possible instances. There are
no known relationships between instances except for the fact that
they are all individuals who appeared in news sources on line, and
some individuals appear in multiple pairs.

What data does each instance consist of? “Raw” data (e.g., unpro-
cessed text or images)or features? In either case, please provide a de-
scription.
Each instance contains a pair of images that are 250 by 250 pixels
in JPEG 2.0 format.

Is there a label or target associated with each instance? If so, please
provide a description.
Each image is accompanied by a label indicating the name of the
person in the image.

Is any information missing from individual instances? If so, please
provide a description, explaining why this information is missing (e.g., be-
cause it was unavailable). This does not include intentionally removed
information, but might include, e.g., redacted text.
Everything is included in the dataset.

Are relationships between individual instances made explicit (e.g.,
users’ movie ratings, social network links)? If so, please describe
how these relationships are made explicit.
There are no known relationships between instances except for
the fact that they are all individuals who appeared in news sources
on line, and some individuals appear in multiple pairs.

Are there recommended data splits (e.g., training, develop-
ment/validation, testing)? If so, please provide a description of these
splits, explaining the rationale behind them.
The dataset comes with specified train/test splits such that none
of the people in the training split are in the test split and vice
versa. The data is split into two views, View 1 and View 2. View
1 consists of a training subset (pairsDevTrain.txt) with 1100 pairs
of matched and 1100 pairs of mismatched images, and a test sub-
set (pairsDevTest.txt) with 500 pairs of matched and mismatched
images. Practitioners can train an algorithm on the training set
and test on the test set, repeating as often as necessary. Final
performance results should be reported on View 2 which consists
of 10 subsets of the dataset. View 2 should only be used to test
the performance of the final model. We recommend reporting
performance on View 2 by using leave-one-out cross validation,
performing 10 experiments. That is, in each experiment, 9 sub-
sets should be used as a training set and the 10th subset should be
used for testing. At a minimum, we recommend reporting the es-
timated mean accuracy, µ̂ and the standard error of the mean:
SE for View 2.
µ̂ is given by:

µ̂ =

P10
i=1 pi
10

(1)

where pi is the percentage of correct classifications on View 2
using subset i for testing. SE is given as:

SE =
�̂p
10

(2)

Figure 1: Example datasheet for Labeled Faces in the Wild [25], page 1.

18

[Gebru et	al.,	
arXiv:1803.09010,	
2019]

A Database for Studying Face Recognition in Unconstrained Environments Labeled Faces in the Wild

Motivation
For what purpose was the dataset created? Was there a specific
task in mind? Was there a specific gap that needed to be filled? Please
provide a description.
Labeled Faces in the Wild was created to provide images that
can be used to study face recognition in the unconstrained setting
where image characteristics (such as pose, illumination, resolu-
tion, focus), subject demographic makeup (such as age, gender,
race) or appearance (such as hairstyle, makeup, clothing) cannot
be controlled. The dataset was created for the specific task of pair
matching: given a pair of images each containing a face, deter-
mine whether or not the images are of the same person.1

Who created this dataset (e.g., which team, research group) and on
behalf of which entity (e.g., company, institution, organization)?
The initial version of the dataset was created by Gary B. Huang,
Manu Ramesh, Tamara Berg, and Erik Learned-Miller, most
of whom were researchers at the University of Massachusetts
Amherst at the time of the dataset’s release in 2007.

Who funded the creation of the dataset? If there is an associated grant,
please provide the name of the grantor and the grant name and number.
The construction of the LFW database was supported by a United
States National Science Foundation CAREER Award.

Any other comments?

Composition

What do the instances that comprise the dataset represent (e.g., doc-
uments, photos, people, countries)? Are there multiple types of in-
stances (e.g., movies, users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description.
Each instance is a pair of images labeled with the name of the
person in the image. Some images contain more than one face.
The labeled face is the one containing the central pixel of the
image—other faces should be ignored as “background”.

How many instances are there in total (of each type, if appropriate)?
The dataset consists of 13,233 face images in total of 5749 unique
individuals. 1680 of these subjects have two or more images and
4069 have single ones.

Does the dataset contain all possible instances or is it a sample (not
necessarily random) of instances from a larger set? If the dataset is
a sample, then what is the larger set? Is the sample representative of the
larger set (e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover a more diverse range of
instances, because instances were withheld or unavailable).

1All information in this datasheet is taken from one of five sources. Any errors
that were introduced from these sources are our fault.

Original paper: http://www.cs.cornell.edu/people/pabo/
movie-review-data/; LFW survey: http://vis-www.cs.umass.
edu/lfw/lfw.pdf; Paper measuring LFW demographic characteris-
tics : http://biometrics.cse.msu.edu/Publications/Face/HanJain
UnconstrainedAgeGenderRaceEstimation MSUTechReport2014.pdf;
LFW website: http://vis-www.cs.umass.edu/lfw/.

The dataset does not contain all possible instances. There are
no known relationships between instances except for the fact that
they are all individuals who appeared in news sources on line, and
some individuals appear in multiple pairs.

What data does each instance consist of? “Raw” data (e.g., unpro-
cessed text or images)or features? In either case, please provide a de-
scription.
Each instance contains a pair of images that are 250 by 250 pixels
in JPEG 2.0 format.

Is there a label or target associated with each instance? If so, please
provide a description.
Each image is accompanied by a label indicating the name of the
person in the image.

Is any information missing from individual instances? If so, please
provide a description, explaining why this information is missing (e.g., be-
cause it was unavailable). This does not include intentionally removed
information, but might include, e.g., redacted text.
Everything is included in the dataset.

Are relationships between individual instances made explicit (e.g.,
users’ movie ratings, social network links)? If so, please describe
how these relationships are made explicit.
There are no known relationships between instances except for
the fact that they are all individuals who appeared in news sources
on line, and some individuals appear in multiple pairs.

Are there recommended data splits (e.g., training, develop-
ment/validation, testing)? If so, please provide a description of these
splits, explaining the rationale behind them.
The dataset comes with specified train/test splits such that none
of the people in the training split are in the test split and vice
versa. The data is split into two views, View 1 and View 2. View
1 consists of a training subset (pairsDevTrain.txt) with 1100 pairs
of matched and 1100 pairs of mismatched images, and a test sub-
set (pairsDevTest.txt) with 500 pairs of matched and mismatched
images. Practitioners can train an algorithm on the training set
and test on the test set, repeating as often as necessary. Final
performance results should be reported on View 2 which consists
of 10 subsets of the dataset. View 2 should only be used to test
the performance of the final model. We recommend reporting
performance on View 2 by using leave-one-out cross validation,
performing 10 experiments. That is, in each experiment, 9 sub-
sets should be used as a training set and the 10th subset should be
used for testing. At a minimum, we recommend reporting the es-
timated mean accuracy, µ̂ and the standard error of the mean:
SE for View 2.
µ̂ is given by:

µ̂ =

P10
i=1 pi
10

(1)

where pi is the percentage of correct classifications on View 2
using subset i for testing. SE is given as:

SE =
�̂p
10

(2)

Figure 1: Example datasheet for Labeled Faces in the Wild [25], page 1.

18

[Gebru et	al.,	
arXiv:1803.09010,	
2019]

A Database for Studying Face Recognition in Unconstrained Environments Labeled Faces in the Wild

No. The data was crawled from public web sources, and the in-
dividuals appeared in news stories. But there was no explicit in-
forming of these individuals that their images were being assem-
bled into a dataset.

Has an analysis of the potential impact of the dataset and its use
on data subjects (e.g., a data protection impact analysis)been con-
ducted? If so, please provide a description of this analysis, including the
outcomes, as well as a link or other access point to any supporting docu-
mentation.
Unknown

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., dis-
cretization or bucketing, tokenization, part-of-speech tagging, SIFT
feature extraction, removal of instances, processing of missing val-
ues)? If so, please provide a description. If not, you may skip the remain-
der of the questions in this section.
The following steps were taken to process the data:

1. Gathering raw images: First the raw images for this
dataset were obtained from the Faces in the Wild dataset
consisting of images and associated captions gathered from
news articles found on the web.

2. Running the Viola-Jones face detector4 The OpenCV ver-
sion 1.0.0 release 1 implementation of Viola-Jones face de-
tector was used to detect faces in each of these images, using
the function cvHaarDetectObjects, with the provided Haar
classifier—cascadehaarcascadefrontalfacedefault.xml. The
scale factor was set to 1.2, min neighbors was set to 2, and
the flag was set to CV HAAR DO CANNY PRUNING.

3. Manually eliminating false positives: If a face was de-
tected and the specified region was determined not to be a
face (by the operator), or the name of the person with the
detected face could not be identified (using step 5 below),
the face was omitted from the dataset.

4. Eliminating duplicate images: If images were determined
to have a common original source photograph, they are de-
fined to be duplicates of each other. An attempt was made to
remove all duplicates but a very small number (that were not
initially found) might still exist in the dataset. The number
of remaining duplicates should be small enough so as not
to significantly impact training/testing. The dataset contains
distinct images that are not defined to be duplicates but are
extremely similar. For example, there are pictures of celebri-
ties that appear to be taken almost at the same time by dif-
ferent photographers from slightly different angles. These
images were not removed.

5. Labeling (naming) the detected people: The name asso-
ciated with each person was extracted from the associated

4Paul Viola and Michael Jones. Robust real-time face detection. IJCV, 2004

news caption. This can be a source of error if the orig-
inal news caption was incorrect. Photos of the same per-
son were combined into a single group associated with one
name. This was a challenging process as photos of some
people were associated with multiple names in the news cap-
tions (e.g.“Bob McNamara” and “Robert McNamara”). In
this scenario, an attempt was made to use the most common
name. Some people have a single name (e.g. “Madonna” or
“Abdullah”). For Chinese and some other Asian names, the
common Chinese ordering (family name followed by given
name) was used (e.g. “Hu Jintao”).

6. Cropping and rescaling the detected faces: Each detected
region denoting a face was first expanded by 2.2 in each di-
mension. If the expanded region falls outside of the image,
a new image was created by padding the original pixels with
black pixels to fill the area outside of the original image.
This expanded region was then resized to 250 pixels by 250
pixels using the function cvResize, and cvSetImageROI as
necessary. Images were saved in JPEG 2.0 format.

7. Forming pairs of training and testing pairs for View 1
and View 2 of the dataset: Each person in the dataset was
randomly assigned to a set (with 0.7 probability of being in
a training set in View 1 and uniform probability of being in
any set in View 2). Matched pairs were formed by picking
a person uniformly at random from the set of people who
had two or more images in the dataset. Then, two images
were drawn uniformly at random from the set of images of
each chosen person, repeating the process if the images are
identical or if they were already chosen as a matched pair).
Mismatched pairs were formed by first choosing two peo-
ple uniformly at random, repeating the sampling process if
the same person was chosen twice. For each chosen person,
one image was picked uniformly at random from their set of
images. The process is repeated if both images are already
contained in a mismatched pair.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unanticipated
future uses)? If so, please provide a link or other access point to the
“raw” data.
The raw unprocessed data (consisting of images of faces and
names of the corresponding people in the images) is saved.

Is the software used to preprocess/clean/label the instances avail-
able? If so, please provide a link or other access point.
While a script running a sequence of commands is not available,
all software used to process the data is open source and has been
specified above.

Any other comments?

Figure 4: Example datasheet for Labeled Faces in the Wild [25], page 4.

21

Outline	for	lecture

1. Building	population-level	checks	into	
deployment/transfer

2. Machine	learning	in	anticipation	of	dataset	
shift
– Transfer	learning
– Defenses	against	adversarial	attacks

Transfer	learning
• We	have	a	lot	of	data	from	p(x,y)	and a	little	data	
from	q(x,y)

• How	can	we	quickly	adapt?
1. Linear	models:	original	representation,	modify	

weights
2. Linear	models:	manually	choose	a	good	shared	

representation
3. Deep	models:	re-use	part	of	the	learned	

representation,	fine-tune
4. Deep	models:	automatically	find	a	good	shared	

representation	

Transfer	learning
• We	have	a	lot	of	data	from	p(x,y)	and a	little	data	
from	q(x,y)

• How	can	we	quickly	adapt?
1. Linear	models:	original	representation,	modify	

weights
2. Linear	models:	manually	choose	a	good	shared	

representation
3. Deep	models:	re-use	part	of	the	learned	

representation,	fine-tune
4. Deep	models:	automatically	find	a	good	shared	

representation	

Transfer	learning	for	linear	models

• Learn	wold using	data	drawn	from	p(x,y)
• Then,	when	learning	using	data	from	q,	instead	
of	using	typical	L1	or	L2	regularization,	use:

• Same	as	what	we	previously	discussed	for	
multi-task	learning	in	the	context	of	disease	
progression	modeling

||w � w
old

||
1

||w � w
old

||2
2

or

Transfer	learning
• We	have	a	lot	of	data	from	p(x,y)	and a	little	data	
from	q(x,y)

• How	can	we	quickly	adapt?
1. Linear	models:	original	representation,	modify	

weights
2. Linear	models:	manually	choose	a	good	shared	

representation
3. Deep	models:	re-use	part	of	the	learned	

representation,	fine-tune
4. Deep	models:	automatically	find	a	good	shared	

representation	

Model

?

Predicting Clinical Outcomes Across
Changing Electronic Health Record Systems

Jen J. Gong, Tristan Naumann, Peter Szolovits, John V. Guttag
Computer Science and Artificial Intelligence Laboratory, MIT

KDD 2017

EHR 1 EHR 2

Applying analytics across changing EHR
systems is challenging

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

EHR 1 EHR 2

1. The same conceptual items might be
mapped to different encodings.

Applying analytics across changing EHR
systems is challenging

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

EHR 1 EHR 2

1. The same conceptual items might be
mapped to different encodings.
2. Old concepts are removed.

Applying analytics across changing EHR
systems is challenging

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

EHR 1 EHR 2

1. The same conceptual items might be
mapped to different encodings.
2. Old concepts are removed.
3. New concepts are added.

Applying analytics across changing EHR
systems is challenging

…

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

We can learn models using only EHR 2

EHR 1

But this results in throwing away valuable data.

EHR 2

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

EHR 1 EHR 2

We can learn models on EHR 1 and apply them to
EHR 2

But concepts important in EHR 1 may not appear in EHR 2,
and vice versa.

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Or, we can develop a model on only the
intersection of the elements in EHR 1 and EHR 2

But this could remove the majority of clinical concepts in both
EHRs from our model.

EHR 1 EHR 2

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Solution: Map semantically similar items to a
shared vocabulary

EHR 1 EHR 2

Identify semantically equivalent concepts

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Predictive Models

Outcomes: (1) In-Hospital Mortality, (2) Prolonged Length of Stay

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Bag-of-events (BOE)

Enter
s ICU

Hospital
Admission 0 22 82 62

2

5814:'CVP Alarm (Lo/Hi)’

1046:	’Pain Present’

Minutes from
ICU
Admission

25:‘Heparin’

Example patient timeline

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Bag-of-events (BOE)

1 0 1 1

central venous pressure
(CVP) alarm

urine out
foley pain present heparin

Enter
s ICU

Hospital
Admission 0 22 82 62

2

5814:'CVP Alarm (Lo/Hi)’

1046:	’Pain Present’

Minutes from
ICU
Admission

25:‘Heparin’

Example patient timeline

5814 55 1046 25Item IDs

Text
description

BOE

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

ischemic
stroke

hemorrhagic	
stroke	

C0948008
ischemic stroke

C0553692
hemorrhagic stroke

C0475224
ischemic

C0333275
hemorrhagic

C0038454
stroke

1 2

1	 2	 1	 2	 3	

…	

…	

From EHR-specific events to a shared
vocabularyEHR 1 EHR 2

Identify Equivalent
Semantic Concepts

Our solution: Map semantically similar items to a
shared vocabulary

cTAKES1

(Clinical Text Analysis
Knowledge Extraction System)

[1] Savova, G. K. et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation,
and applications. JAMIA, 2010.

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Data & Experimental Setup

• MIMIC-III dataset:
• Publicly available data from 2 EHR systems (CareVue and MetaVision)

from ICUs.
• “Item IDs” encode different events (e.g., lab tests, vital signs,

medications, other charted observations).
• Some “Item IDs” are shared between the two EHRs, but the majority are

not

• Models
• L2-regularized Logistic Regression, 5-fold cross-validation on training

set to determine best hyperparameters

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Three Experiments

1. Show that a Bag-of-Events feature representation is useful in
predicting clinical outcomes within each EHR version.

2. Compare performance of semantically equivalent concepts (CUIs)
to EHR-specific Item IDs within EHR versions.

3. Compare performance of semantically equivalent concepts (CUIs)
to EHR-specific Item IDs across EHR versions.

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Does BOE feature representation have predictive
value?

KDD 2017, August 2017, Halifax, Nova Scotia Jen J. Gong, Tristan Naumann et al.

Figure 8: Mean AUC across 10 2:1 strati�ed holdout sets and 95% con�dence interval shown for each database and outcome
considered. Item IDs + SAPS-II (purple) signi�cantly outperforms Item IDs-only (blue) or SAPS-II only (red) in predicting
in-hospital mortality (top) and prolonged LOS (bottom) in CareVue (le�) and MetaVision (right).

5.2 Mapping Item IDs to CUIs
We evaluate the predictive performance of the BOE features when
the events counted are represented by UMLS concept unique iden-
ti�ers (CUIs) rather than EHR-speci�c Item IDs. We compare the
performance of a model trained using SAPS-II + CUIs vs. SAPS-
II + Item IDs for each of the tasks of interest. We evaluate the
three methods of translating item descriptions to CUIs described in
Section 3.3.

�e mean AUCs across 10 2:1 strati�ed training:holdout splits
are shown in Figure 9, and the Wilcoxon sign-rank test p-values
for in-hospital mortality and prolonged length of stay are shown
in Table 2 and Table 3, respectively. �e mean di�erences in AUCs
across all the prediction gaps were statistically signi�cant for the
outcome of in-hospital mortality in CareVue and MetaVision, as
well as the outcome of prolonged length of stay in CareVue (p-value

Table 2: Outcome: In-Hospital Mortality. Di�erence in
AUC between SAPS II + Item IDs and SAPS II + CUIs (Span-
ning) shown. Statistical Signi�cance evaluated using the
Wilcoxon Signed-Rank Test.

Prediction CareVue MetaVision
Gap (Hrs) Mean Di�erence in AUC p-value Mean Di�erence in AUC p-value

0 0.0050 0.0051 0.0048 0.0051
12 0.0055 0.0051 0.0052 0.0051
24 0.0058 0.0051 0.0071 0.0051
36 0.0056 0.0051 0.0080 0.0051
48 0.0056 0.0051 0.0074 0.0051

= 0.0051). However, they are small in magnitude (� AUC  0.008).
For the outcome of prolonged LOS, the di�erences in MetaVision
between SAPS II + Item IDs and SAPS II + CUIs were not statistically
signi�cant. �us, although some statistically signi�cant decreases
in AUC occur when CUIs are used, they are very small in magnitude.
�is small di�erence shows that representing clinical events using
CUIs can still achieve high predictive performance on predicting
mortality in the ICU within a single EHR system.

As Figure 9 shows, the spanning method appears to have some-
what improved or comparable performance to the other approaches
across the four tasks. We therefore use the spanning method going
forward to map to the CUI BOE representation. Table 4 shows the
number of item IDs in each EHR version and the resulting number
of CUIs from the cTAKES mapping using the spanning approach.”

Table 3: Outcome: Prolonged Length of Stay. Di�erence in
AUC between SAPS II + Item IDs and SAPS II + CUIs (Span-
ning) shown. Statistical Signi�cance evaluated using the
Wilcoxon Signed-Rank Test.

Prediction CareVue MetaVision
Gap (Hrs) Mean Di�erence in AUC p-value Mean Di�erence in AUC p-value

0 0.0048 0.0051 0.0001 0.7989
12 0.0053 0.0051 0.0015 0.5076
24 0.0071 0.0051 0.0017 0.3863
36 0.0080 0.0051 0.0017 0.2845
48 0.0074 0.0051 0.0018 0.2845

Simplified Acute Physiology Score (SAPS-II): Uses statistics about patient physiology (e.g.,
heart rate, blood pressure, urine output).

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

What is the impact of mapping BOEs to CUIs within
single EHRs?

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Predicting Clinical Outcomes Across Changing Electronic Health Record Systems KDD 2017, August 2017, Halifax, Nova Scotia

Figure 9: Mean AUC across 10 2:1 strati�ed holdout sets and 95% con�dence interval shown for each database and outcome
considered. Converting to CUIs from Item IDs results in small, but statistically signi�cant di�erences in performance in 3
out of the 4 tasks considered. Mean AUC across prediction gaps shown for the outcomes of in-hospital mortality (top) and
prolonged LOS (bottom) in CareVue (le�) and MetaVision (right).

5.3 CUIs Enable Better Transfer Across EHR
Versions

We evaluate performance on predicting in-hospital mortality and
prolonged length of stay across EHRs. To do this, we train a model
on data from one EHR system (Train DB) and evaluate on data
from the other EHR system (Test DB). We hypothesize that models
trained on CUIs will be�er generalize across EHRs compared to
Item IDs because 1) mapping to CUIs removes redundancy within
each EHR, particularly CareVue, and 2) the intersecting set of CUIs
between EHRs is larger than the intersecting set of Item IDs relative
to the number of features in each EHR.

We compare our approach of training a model on CUIs to two
baselines: 1) training on all Item IDs from Train DB (Figure 10(a)),
and 2) training on the common set of Item IDs between Train DB
and Test DB (Figure 10(b)). Training on all Item IDs from Train
DB and testing on Test DB e�ectively means excluding most of the
charted events from consideration during prediction. While this
obviously will not result in the best prediction performance, it is
a realistic simulation of how a model that has been developed on
one database version might directly be applied to data from a new
schema early on in a transition.

�ese results are shown in Figure 11. 95% con�dence intervals
are shown on the test AUC, generated by bootstrapping the test
set 1000 times to have the same size and class imbalance as the
original test set. �e di�erence between the training AUC and test
AUC provides a sense of how well the model is able to generalize

from Train DB to Test DB, and to what extent it is over��ing to
the training data.

�ese results demonstrate that the models trained on CUIs out-
perform those trained on both all and common Item IDs for both
outcomes. In addition, the di�erence between the training and test
AUC when all Item IDs are used (red lines) is much larger than the
same di�erence when CUIs are used, or when common Item IDs are
used. �is demonstrates that using CUIs is less prone to over��ing
and results in more generalizable models.

Using the UMLS CUIs, we increase the AUC on in-hospital mor-
tality by at least 0.01 across all tasks. Similarly, we improve the AUC
on prolonged LOS by at least 0.009 when training on MetaVision
and testing on CareVue. When we train on CareVue and test on

Train DB Test DB Train DB Test DB

Figure 10: Baseline approaches: (a) Train a model on all
items in the training database (Train DB) (le�), and (b) Train
amodel only on common items that appear in both the train-
ing and test databases (right).

What is the impact of mapping BOEs to CUIs within
single EHRs?

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

What happens when we apply models across EHRs?

Baseline 1: all Baseline 2: common

TrainDB TestDBTrainDB TestDB

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

What happens when we apply models across EHRs?KDD 2017, August 2017, Halifax, Nova Scotia Jen J. Gong, Tristan Naumann et al.

Figure 11: AUC when training on TrainDB and testing on TestDB using EHR-speci�c Item IDs (all), Item IDs (Common), and
CUIs. 95% con�dence intervals are shown for each database and outcome considered. �e dashed lines show the training AUC
of each model on Train DB, while the solid lines show the AUC on Test DB. AUC when training using CUIs representation
results in the best AUC across all prediction gaps compared to Item IDs (all) or Item IDs (common) representations. �ese
improvements are more pronounced for the outcome of Prolonged Length of Stay when training on CareVue and testing on
MetaVision (bottom le�).

MetaVision, we achieve even larger improvements compared to
common Item IDs (� AUC > 0.03) and all Item IDs (� AUC > 0.07).

For predicting prolonged LOS with a gap of 24 hours when
training on CareVue and testing on MetaVision, these di�erences
translate to an AUC of 0.77 (0.76, 0.78) when using CUIs, compared
to an AUC of 0.70 (0.69, 0.71) when all Item IDs are used and 0.74
(0.73, 0.75) when common Item IDs are used. �us, converting our
EHR-speci�c Item ID features to a common CUI representation

Table 4: Number of Item IDs and CUIs in CareVue, MetaVi-
sion, and intersection for in-hospital mortality a�er �lter-
ing (� 5 occurrences in data). For MetaVision, the �lter se-
lects 2438 of the 5190 features. For CareVue, the �lter selects
5,875 of the 15,909 features.

Prediction Gap CareVue MetaVision Intersection
(Hrs) Item IDs CUIs Item IDs CUIs Item IDs CUIs
0 5875 3660 2438 2192 2118 2052
12 5843 3645 2421 2182 2102 2046
24 5795 3619 2405 2175 2094 2041
36 5746 3595 2384 2161 2076 2035
48 5703 3573 2351 2151 2048 2017

results in signi�cantly be�er performance when applying a model
learned on data from one EHR version to data from another.

6 CONCLUSION AND DISCUSSION
We introduce an approach to constructing machine learning models
that are portable across di�erent representations of semantically
similar information. For example, when a database is replaced
or a schema changed, there is inevitably a period of time during
which there are insu�cient data to learn useful predictive models.
Our method facilitates the use of models built using the previous
database or data schema during such periods.

We demonstrate the utility of our approach for constructing
risk models for patients in the intensive care unit. We leverage
the UMLS medical ontology to construct clinical risk models that
perform well across two di�erent EHRs on two di�erent tasks:
in-hospital mortality and prolonged length of stay. Our method
of mapping to CUIs results in increased AUC over EHR-speci�c
item encodings for all prediction gaps, both outcomes, and both
directions of training on one EHR and testing on the other.

Despite improving performance, our method su�ers from several
limitations. First, although using the CUI BOE representation leads
to signi�cantly higher overlap in feature spaces between the two

[Slides	from	Jen	Gong	and	Tristan	Naumann on	KDD	2017	paper]

Transfer	learning
• We	have	a	lot	of	data	from	p(x,y)	and a	little	data	
from	q(x,y)

• How	can	we	quickly	adapt?
1. Linear	models:	original	representation,	modify	

weights
2. Linear	models:	manually	choose	a	good	shared	

representation
3. Deep	models:	re-use	part	of	the	learned	

representation,	fine-tune
4. Deep	models:	automatically	find	a	good	shared	

representation	

Transfer	learning	for	feedforward	
networks

Slide	acknowledgement:TelecomBCN

• Widely	used	technique	 in	computer	vision:
• Take	a	pre-trained	model,	chop	off	the	top	few	layers,	and	

train	a	new	shallow	model	on	the	 induced	representation

“Off-the-shelf”

Idea: use outputs of one or more layers of a network trained on a different task as
generic feature detectors. Train a new shallow model on these features.

conv2

conv3

fc1

conv1

loss

Data and labels (e.g. ImageNet)

fc2

softmax

TRANSFER

Shallow classifier (e.g. SVM)

conv2

conv3

fc1

conv1

Target data and labels

features

Transfer	learning	for	feedforward	
networks

[Adam	Yala,	MIT	6.S897/HST.956	Lecture 13,	2019.]

Transfer	learning	for	recurrent	neural	
networks

• Naïve	encoding	of	inputs	for	a	RNN	might	use	a	one-hot	encoding

• An	example	of	a	(simplified)	recurrent	unit:

• Challenge: how	do	we	make	hidden	dimension	d	large,	yet	not	
overfit with	rare	words?

“class”
xt 2 {0, 1}|V |

dimension
d⇥ |V |

st 2 Rd

Transfer	learning	for	recurrent	neural	
networks

• Instead,	do	linear	transformation of	words	prior	to	feeding	to	RNN

• Each	column	of	We can	be	thought	of	as	a	word	embedding,	which	
can	be	trained	end-to-end

• Can	use	pre-trained word	embeddings,	 coming	from	learning	a	
language	model	or	another	classification	problem	with	a	much	
larger	dataset

“class”
xt 2 {0, 1}|V |

“class”
xt 2 {0, 1}|V |

x

0
t = W

e
xt x

0
t 2 Rk

k ⇥ |V |
st 2 Rd st 2 Rd

i2b2 2010 i2b2 2012 Semeval 2014
Task 7

Semeval 2015
Task 14

Method General MIMIC General MIMIC General MIMIC General MIMIC
w2v - 82.67 - 73.77 - 72.49 - 73.96

GloVe 84.08 85.07 74.95 75.27 70.22 77.73 72.13 76.68
fastText 83.46 84.19 73.24 74.83 69.87 76.47 72.67 77.85
ELMo 83.83 87.80 76.61 80.5 72.27 78.58 75.15 80.46

BERTBASE 84.33 89.55 76.62 80.34 76.76 80.07 77.57 80.67
BERTLARGE 85.48 90.25 78.14 80.91 78.75 80.74 77.97 81.65
BioBERT 84.76 - 77.77 - 77.91 - 79.97 -

Table 3: Test set comparison in exact F-measure of embedding methods across tasks.

ized from BERTBASE and BERTLARGE are pre-
trained. Unless specified, we follow the detailed
instruction provided to set up the pre-training pa-
rameters, as other options are experimented and
it has been concluded that this is a useful recipe
when pre-training from their released model (e.g.,
poor model convergence). The vocabulary list
consisting of 28,996 word-pieced tokens applied
in BERTBASE and BERTLARGE are adopted. Ac-
cording to their paper, the performance on the
downstream tasks decrease as the training steps
increase; thus we decide to save the intermedi-
ate checkpoint (every 20,000 steps) and report
the performance of intermediate models on the
downstream task. The stopping checkpoints for
BERTBASE(MIMIC) and BERTLARGE(MIMIC) are
set at 0.6 million steps.

4.2.3 Fine-tuing BERT

Fine-tuning the BERT clinical model on the down-
stream task needs some detailed adjustments.
First, the model is more likely to fall into a local
minimum if the Bi-LSTM is randomly initialized.
To mitigate this problem, Xavier Initialization is
performed on the weights of the Bi-LSTM out-
put layer, namely set the weights initialized with
a variance of the inverse of the hidden unit size.
The early stopping technique is applied to prevent
overfitting. Finally, the post-processing steps are
conducted to align the BERT output with the con-
cept gold standard, including handling truncated
sentences and word-pieced tokenizations.

4.2.4 Evaluation

10% of the official training set are used to consti-
tute the development set and the official test set
are used to report the performances. The perfor-
mances are calculated by precision, recall and F-
measure for strict/exact matching.

The pre-training BERT experiments are imple-
mented in TensorFlow (Abadi et al., 2016) on

a NVidia Tesla V100 GPU (32G), other experi-
ments are performed in TensorFlow on a NVIDIA
Quadro M5000 (8G).

5 Results

5.1 Embedding Comparison

The performances on the test set between different
embedding methods on four clinical concept ex-
traction tasks are reported in Table 3. The perfor-
mance is evaluated in exact matching F-measure.
In general, as for the same embedding method,
embeddings pre-trained on clinical corpus per-
formed better than those pre-trained on open do-
main corpus.

For i2b2 2010, the best performance is achieved
by BERTLARGE(MIMIC) with an F-measure of
90.25. It improves the performance by 5.18 over
the best performance of the traditional embed-
dings achieved by GloVe (MIMIC) with F mea-
sure of 85.07. As expected, both ELMo and BERT
clinical embeddings outperform the off-the-shelf
embeddings with relative increase up to 10%.

The best performance on the i2b2 2012 task
is achieved by BERTLARGE(MIMIC) with an F-
measure of 80.91 across all the methods. It in-
creases F-measure by 5.64 over GloVe(MIMIC),
which obtains the best score (75.27) among the
traditional embedding methods. Not surprisingly,
ELMo and BERT with pre-trained clinical corpus
exceed the off-the-shelf open domain models.

The most efficient model for SemEval 2014
task achieved an exact matching with F-measure
of 80.74 by BERTLARGE(MIMIC). Notably, tra-
ditional embedding models pretrained on clin-
ical corpus such as Glove(MIMIC) obtained
a higher performance than contextual embed-
ding model trained on open domain, namely
ELMo(General).

For SemEval 2015 task, since the experiments
are performed only in concept extraction, the mod-

[Si,	Wang,	Xu,	Roberts.	Enhancing	Clinical	Concept	Extraction	with	Contextual	Embedding.	
arXiv:1902.08691,	Feb 2019]

Application:	clinical	concept	extraction

Transfer	learning	for	recurrent	neural	
networks

[Huang,	Altosaar,	Ranganath.	ClinicalBERT:	Modeling	Clinical	Notes	and	Predicting	Hospital	
Readmission.	arXiv:1904.05342,	Apr 2019]

ClinicalBert

Model Area under receiver
operating characteristic

Area under
precision-recall

Recall at
precision of 80%

ClinicalBert 0.768 ± 0.027 0.747 ± 0.029 0.255 ± 0.113
Bag-of-words 0.684 ± 0.025 0.674 ± 0.027 0.217 ± 0.119
bilstm 0.694 ± 0.025 0.686 ± 0.029 0.223 ± 0.103

Table 3: ClinicalBert accurately predicts 30-day readmission prediction using
discharge summaries. The mean of 5-fold cross validation is reported along
with the standard deviation. ClinicalBert outperforms both the bag-of-words
model and the bilstm deep language model.

Bag-of-words. The bag-of-words model is a simple method that uses word counts to
represent a note. We pick the top 5,000 term frequency-inverse document frequency (tf-idf)
words as features. This means each note is represented by a 5,000-dimensional vector where
each entry is the count of the corresponding vocabulary word occurring in the note. The top
5,000 tf-idf words are computed using the training set. The bag-of-words representation
is then computed for every note in the training and test sets. Logistic regression with L2
regularization is used to fit the training readmission labels.

bilstm and word2vec. Although bag-of-words method is simple and fast, it does not
consider the temporal relationship between words in the note. A Bidirectional Long Short-
Term Memory Network (bilstm) (Schuster and Paliwal, 1997; Hochreiter and Schmidhuber,
1997; Graves and Schmidhuber, 2005) is used to build a deep model of relationships between
words in a sequence. For the input word embedding, the word2vec model from Section 3
is used. The bilstm has 200 output units, with a dropout rate of 0.1. The hidden state
is fed into a global max pooling layer and a fully-connected layer with a dimensionality of
50, followed by a rectifier activation function. The rectifier is followed by a fully-connected
layer with a single output unit with sigmoid activation function. The binary classification
objective function is optimized using the Adam adaptive learning rate (Kingma and Ba,
2015). The bilstm is trained for three epochs with a batch size of 64 with early stopping
based on the validation loss.

4.3. Readmission Prediction With Discharge Summaries

The discharge summary contains essential information of a patients’ stay since it is used by
the post-hospital care team and doctors in future visits (Van Walraven et al., 2002). The
summary may contain information like patients’ discharge conditions, procedures, and treat-
ments, and significant findings (Kind and Smith, 2008). This means discharge summaries
should have predictive value for hospital readmission. Table 3 shows that ClinicalBert out-
performs competitors in terms of precision and recall, on a task of readmission prediction
based on patient discharge summaries.

11

Application:	classification	from	clinical	notes

Transfer	learning	for	recurrent	neural	
networks

Transfer	learning	for	recurrent	neural	
networks

Patient:

Medical	Claims:
-ICD9	diagnosis	code
-CPT	code	(procedure)
-Specialty
-Location	of	service
-Date	of	Service

Lab	Tests:
-LOINC	code	(urine	or	
blood	test	name)
-Results	(actual	values)
-Lab	ID
-Range	high/low-Date

Medications:
-NDC	code	(drug	
name)	
-Days	of	supply
-Quantity
-Service	Provider	ID
-Date	of	fill

time

10	years

Can	we	use	these	
techniques	for	
longitudinal	patient	
records	(non-textual	
data)?

• Can	we	embed	all	3	million+	concepts	in	the	UMLS	(Unified	
Medical	Language	System),	140,000	ICD-10-CM	diagnosis	
and	procedure	codes,	360,000	NDC	medication	codes…?

250.00	(Diabetes-non	 insulin	dependent)
790.29	(Other	abnormal	glucose)

Metformin

714.0	(Rheumatoid	arthritis)
710.0	(Systemic	lupus	erythematosus)

X1

X2

Insulin

Hydroxychloroquine Sulfate
Methrotrexate

443.0	(Raynaud’s syndrome)

Transfer	learning	for	recurrent	neural	
networks

[Choi,	Chiu,	Sontag,	Learning	Low-Dimensional	Representations	of	Medical	Concepts,	AMIA	CRI	2016;
Choi,	Bahadori et	al.,	Multi-Layer	Representation	Learning	for	Medical	Concepts,	KDD	2016;
Beam	et	al.,	Clinical Concept Embeddings	Learned from	Massive	Sources...,	arXiv:1804.01486,	2018]

• Nearest	neighbors	of	710.0	(Systemic	lupus	erythematosus):
Table 6: The neighborhood of the diagnosis code 710.0 in the MCEMC. We display the top 5 neighbors for each
type of code, filtering duplicates.

Nearest Neighbors of ICD9 710.0(Systemic lupus erythematosus) in MCEMC
Diagnosis(ICD9)

1 695.4(Lupus erythematosus)
2 710.9(Unspecified diffuse connective tissue disease)
3 710.2(Sicca syndrome)
4 795.79(Other and unspecified nonspecific immunological findings)
5 443.0(Raynaud’s syndrome)

Lab-test(LOINC)
1 4498-2(Complement C4 in Serum or Plasma)
2 4485-9(Complement C3 in Serum or Plasma)
3 5130-0(DNA Double Strand Ab) in Serum)
4 14030-1(Smith Extractable Nuclear Ab+Ribonucleoprotein Extractable Nuclear Ab in Serum)
5 11090-8(Smith Extractable Nuclear Ab in Serum)

Drug(NDC)
1 00378037301(Hydroxychloroquine Sulfate 200mg)
2 00024156210(Plaquenil 200mg)
3 51927105700(Fluocinolone Acetonide Miscell Powder)
4 00062331300(All-flex Contraceptive Diaphragm Arcing Spring Ortho All-flex 80mm)
5 00054412925(Cyclophosphamide 25mg)

that the two sets of embeddings that this work introduces exhibit the Medical Relatedness Property through their
neighborhood structures, differing from the previous work. We discuss how this precise characterization can be
utilized for an application in the next section.

3.3 Qualitative evaluation
This work demonstrates that learning distributed representations or embeddings, originally used in natural lan-
guage processing community, has a new applicability to biomedical informatics. Furthermore, we provide a
precise characterization of the new embeddings in that they exhibit the Medical Relatedness Properties in their
neighborhood structures when contrasted with the embeddings learned in previous work.

Besides many other applications that can leverage these embeddings, such as supervised tasks involving these
medical concepts, we argue that the newly introduced embeddings can contribute to the process of determining
causality and clinical actionability, as their neighborhood structures can be investigated on its own to provide
sources of insights to the practitioners that are searching for undiscovered medical relations. We end our paper
with the displays of few neighborhood structures from the two newly introduced embeddings.

4 Discussion
We introduced two algorithms for learning distributed representations from temporal data. The first algorithm
takes as input the raw data, and as such leads to a flexible framework that is more easily extended. The second
algorithm takes as input a weighted graph, where the weights are derived from the co-occurence counts of concepts
within fixed time intervals. Notably, this allows us to learn embeddings from privacy-preserving data which is
aggregated across patients prior to being presented to the learning algorithm. Additionally, it may be more broadly
applicable to other tasks where embeddings are to be learned from a weighted graph, and where the weights simply
denote the strength of the interaction between the corresponding pair of concepts.

There are several directions for future work. For example, whereas we used a fixed time interval to partition the
data (e.g., using weighted graphs computed from co-occurences in a single day, month, or year), we could instead
attempt to learn simultaneously on all time intervals, which may lead to higher quality embeddings by asking them

Transfer	learning	for	recurrent	neural	
networks

[Choi,	Chiu,	Sontag,	Learning	Low-Dimensional	Representations	of	Medical	Concepts,	AMIA	CRI	2016]

Transfer	learning
• We	have	a	lot	of	data	from	p(x,y)	and a	little	data	
from	q(x,y)

• How	can	we	quickly	adapt?
1. Linear	models:	original	representation,	modify	

weights
2. Linear	models:	manually	choose	a	good	shared	

representation
3. Deep	models:	re-use	part	of	the	learned	

representation,	fine-tune
4. Deep	models:	automatically	find	a	good	shared	

representation	

Automatically	find	a	good	shared	
representation

Ganin et	al.,	Domain-Adversarial	Training	of	Neural	Networks.	JMLR	‘16

• Guided	by	learning	theory	(Ben-David	et	al.	‘06),	recent	work	
shows	how	to	do	domain	adaptation	without	labels	in	target	set:

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor G
f

and the domain
classifier G

d

, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

Outline	for	lecture

1. Building	population-level	checks	into	
deployment/transfer

2. Machine	learning	in	anticipation	of	dataset	
shift
– Transfer	learning
– Defenses	against	adversarial	attacks

Towards	Adversarially	Robust	Models
“pig”

“pig”	(91%) “airliner”	(99%)

+	0.005	x	 =

Acknowledgement:	 Slides	from	Aleksander Madry,	MIT

	𝑚𝑖𝑛𝜃			𝑙𝑜𝑠𝑠 𝜃, 𝑥	, 𝑦

Goal	of	
training:

Differentiable

In
pu
t	𝒙

Output

Parameters	𝜽

Where	Do	Adversarial	Examples	Come	From?

Input Correct	LabelModel	Parameters

Can	use	gradient	descent	
method	to	find	good	𝜃

To	get	an	adv.	example

Slide	credit:	Aleksander Madry

	 𝑚𝑎𝑥𝛿		𝑙𝑜𝑠𝑠 𝜃, 𝑥 + 𝛿, 𝑦

Goal	of	
training:

Differentiable

In
pu
t	𝒙

Output

Parameters	𝜽

Where	Do	Adversarial	Examples	Come	From?

Can	use	gradient	descent	
method	to	find	good	𝜃

To	get	an	adv.	example

Slide	credit:	Aleksander Madry

	 𝑚𝑎𝑥𝛿		𝑙𝑜𝑠𝑠 𝜃, 𝑥 + 𝛿, 𝑦

Goal	of	
training:

Differentiable

In
pu
t	𝒙

Output

Parameters	𝜽

Where	Do	Adversarial	Examples	Come	From?

Can	use	gradient	descent	
method	to	find	bad 𝛿

To	get	an	adv.	example

Which	𝛿 are	allowed?

Examples: 𝛿 that	is	small	wrt

• ℓ2-norm

• Rotation	and/or	translation

• VGG	feature	perturbation

• (add	the	perturbation	you	need	here)

This	choice	is	important
(but	we	put	it	aside)

In	any	case:	We	have	to	confront
(small)	ℓ2-norm	perturbations	

Slide	credit:	Aleksander Madry

Towards	ML	Models	that	Are	Adv.	Robust
[M	Makelov Schmidt	Tsipras	Vladu 2018]

Key	observation:	Lack	of	adv.	robustness	is	NOT	at	odds	with	
what	we	currently	want	our	ML	models	to	achieve

𝔼(5,6)~9 [𝑙𝑜𝑠𝑠 𝜃, 𝑥, 𝑦]Standard	generalization:

But:	Adversarial	noise	is	a	“needle	 in	a	haystack”

Adversarially	robust

Slide	credit:	Aleksander Madry

Towards	ML	Models	that	Are	Adv.	Robust
[M	Makelov Schmidt	Tsipras	Vladu 2018]

Key	observation:	Lack	of	adv.	robustness	is	NOT	at	odds	with	
what	we	currently	want	our	ML	models	to	achieve

Standard	generalization: 𝔼(5,6)~9 [𝑚𝑎𝑥𝜹∈𝚫
	𝑙𝑜𝑠𝑠 𝜃, 𝑥 + 𝜹,𝑦]

Adversarially	robust

But:	Adversarial	noise	is	a	“needle	 in	a	haystack”

Slide	credit:	Aleksander Madry

Towards	ML	Models	that	Are	Adv.	Robust
[M Makelov Schmidt	Tsipras	Vladu 2018]

Resulting	training	primitive:

min
B
	max
E∈F

		𝑙𝑜𝑠𝑠 𝜃, 𝑥 + 𝜹, 𝑦

Finding	a	“bad”	perturbationFinding	a	robust	model

So,	now,	it	is	“just”	about	the	optimization
To	improve	the	model:	Train	on	perturbed	 inputs

(aka	as	“adversarial	training”	[Goodfellow Shlens Szegedy ‘15])

Does	this	work? Yes! (In	practice)
But	certain	care	is	required

Slide	credit:	Aleksander Madry

[Wong	&	Kolter,	Provable	Defenses	against	Adversarial	Examples	via	the	Convex
Outer	Adversarial	Polytope,	ICML	2018.]

ConvNet for	MNIST	that	provably	has	less	than	5.8%	
test	error	for	any	adversarial	attack	with	bounded	
l_inf norm	less	than	0.1

Provable Defenses via the Convex Outer Adversarial Polytope

Input x and
allowable perturbations

Final layer ẑk and
adversarial polytopeDeep network

Convex outer bound

Figure 1. Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound.

the loss function.1 Madry et al. (2017) revisited this connec-
tion to robust optimization, and noted that simply solving
the (non-convex) min-max formulation of the robust opti-
mization problem works very well in practice to find and
then optimize against adversarial examples. Our work can
be seen as taking the next step in this connection between
adversarial examples and robust optimization. Because we
consider a convex relaxation of the adversarial polytope, we
can incorporate the theory from convex robust optimization
and provide provable bounds on the potential adversarial
error and loss of a classifier, using the specific form of dual
solutions of the optimization problem in question without
relying on any traditional optimization solver.

3. Training Provably Robust Classifiers
This section contains the main methodological contribution
of our paper: a method for training deep ReLU networks
that are provably robust to norm-bounded perturbations. Our
derivation roughly follows three steps: first, we define the
adversarial polytope for deep ReLU networks, and present
our convex outer bound; second, we show how we can ef-
ficiently optimize over this bound by considering the dual

problem of the associated linear program, and illustrate how
to find solutions to this dual problem using a single modi-
fied backward pass in the original network; third, we show
how to incrementally compute the necessary elementwise
upper and lower activation bounds, using this dual approach.
After presenting this algorithm, we then summarize how the
method is applied to train provably robust classifiers, and
how it can be used to detect potential adversarial attacks on
previously unseen examples.

3.1. Outer Bounds on the Adversarial Polytope

In this paper we consider a k layer feedforward ReLU-based
neural network, f

✓

: R|x| ! R|y| given by the equations

ẑ

i+1 = W

i

z

i

+ b

i

, for i = 1, . . . , k � 1

z

i

= max{ẑ
i

, 0}, for i = 2, . . . , k � 1

(1)

with z1 ⌘ x and f

✓

(x) ⌘ ẑ

k

(the logits input to the clas-
sifier). We use ✓ = {W

i

, b

i

}
i=1,...,k to denote the set of

all parameters of the network, where W

i

represents a linear
operator such as matrix multiply or convolution.

1This fact is well-known in robust optimization, and we merely
mean that the original paper pointed out this connection.

ℓ u ℓ u
Bounded ReLU set Convex relaxation

ẑ

z

ẑ

z

Figure 2. Illustration of the convex ReLU relaxation over the
bounded set [`, u].

We use the set Z
✏

(x) to denote the adversarial polytope, or
the set of all final-layer activations attainable by perturbing
x by some � with `1 norm bounded by ✏:2

Z
✏

(x) = {f
✓

(x+�) : k�k1  ✏}. (2)

For multi-layer networks, Z
✏

(x) is a non-convex set (it
can be represented exactly via an integer program as in
(Lomuscio & Maganti, 2017) or via SMT constraints (Katz
et al., 2017)), so cannot easily be optimized over.

The foundation of our approach will be to construct a convex

outer bound on this adversarial polytope, as illustrated in
Figure 1. If no point within this outer approximation exists
that will change the class prediction of an example, then we
are also guaranteed that no point within the true adversarial
polytope can change its prediction either, i.e., the point is ro-
bust to adversarial attacks. Our eventual approach will be to
train a network to optimize the worst case loss over this con-
vex outer bound, effectively applying robust optimization
techniques despite non-linearity of the classifier.

The starting point of our convex outer bound is a linear re-
laxation of the ReLU activations. Specifically, given known
lower and upper bounds `, u for the pre-ReLU activations,
we can replace the ReLU equalities z = max{0, ẑ} from
(1) with their upper convex envelopes,

z � 0, z � ẑ, �uẑ + (u� `)z  �u`. (3)

The procedure is illustrated in Figure 2, and we note that if
` and u are both positive or both negative, the relaxation is
exact. The same relaxation at the activation level was used
in Ehlers (2017), however as a sub-step for exact (combina-
torial) verification of networks, and the method for actually
computing the crucial bounds ` and u is different. We denote
this outer bound on the adversarial polytope from replacing
the ReLU constraints as ˜Z

✏

(x).
2For the sake of concreteness, we will focus on the `1 bound

during this exposition, but the method does extend to other norm
balls, which we will highlight shortly.

Provable Defenses via the Convex Outer Adversarial Polytope

Figure 7. Illustration of the actual adversarial polytope and the
convex outer approximation for one of the training points after the
robust optimization procedure.

Outer Bound after Training It is of some interest to see
what the true adversarial polytope for the examples in this
data set looks like versus the convex approximation, eval-
uated at the solution of the robust optimization problem.
Figure 7 shows one of these figures, highlighting the fact
that for the final network weights and choice of epsilon, the
outer bound is empirically quite tight in this case. In Ap-
pendix B.2 we calculate exactly the gap between the primal
problem and the dual bound on the MNIST convolutional
model. In Appendix B.4, we will see that when training on
the HAR dataset, even for larger ✏, the bound is empirically
tight.

B.2. MNIST

Parameters We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.001 (the default option) with
no additional hyperparameter selection. We use minibatches
of size 50 and train for 100 epochs.

✏ scheduling Depending on the random weight initial-
ization of the network, the optimization process for train-
ing a robust MNIST classifier may get stuck and not con-
verge. To improve convergence, it is helpful to start with
a smaller value of ✏ and slowly increment it over epochs.
For MNIST, all random seeds that we observed to not con-
verge for ✏ = 0.1 were able to converge when started with
✏ = 0.05 and taking uniform steps to ✏ = 0.1 in the first
half of all epochs (so in this case, 50 epochs).

MNIST convolutional filters Random filters from the
two convolutional layers of the MNIST classifier after ro-
bust training are plotted in Figure 9. We see a similar story

Figure 8. Learned convolutional filters for MNIST of the first layer
of a trained robust convolutional network, which are quite sparse
due to the `1 term in (6).

in both layers: they are highly sparse, and some filters have
all zero weights.

Activation index counts We plot histograms to visualize
the distributions of pre-activation bounds over examples in
Figure 10. We see that in the first layer, examples have
on average more than half of all their activations in the
I�
1 set, with a relatively small number of activations in the

I1 set. The second layer has significantly more values in
the I+

2 set than in the I�
2 set, with a comparably small

number of activations in the I2 set. The third layer has
extremely few activations in the I3 set, with 90% all of
the activations in the I�

3 set. Crucially, we see that in
all three layers, the number of activations in the I

i

set is
small, which benefits the method in two ways: a) it makes
the bound tighter (since the bound is tight for activations
through the I+

i

and I�
i

sets) and b) it makes the bound more
computationally efficient to compute (since the last term of
(6) is only summed over activations in the I

i

set).

Tightness of bound We empirically evaluate the tight-
ness of the bound by exactly computing the primal LP and
comparing it to the lower bound computed from the dual
problem via our method. We find that the bounds, when
computed on the robustly trained classifier, are extremely
tight, especially when compared to bounds computed for
random networks and networks that have been trained under
standard training, as can be seen in Figure 11.

→	Seems	to	be	a	recurring	problem…

How	do	we	know	this	really	works?

→	Use	formal	verification	(where	feasible):	
• There	is	a	steady	progress	on	scaling	these	techniques	up

[Katz	et	al	‘17,	Wong	Kolter	’18,	Tjeng et	al	’18,	Dvijotham et	al	‘18,	Xiao	Tjeng Shafiullah	M ‘18]

→	Apply	the	standard	security	methodology:
• Evaluate	with	multiple	adaptive	attacks
• Use	public	security	challenges

Robustness	by	
obscurity/complexity
just	does	NOT	work

(see	robust-ml.org)

Slide	credit:	Aleksander Madry

