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Survival modeling with right-censored
data

Event occurrence

/ e.g., death, divorce, college graduation
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[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Notation and formalization

* f(t) = be the probability of death at time t

e Survival function: s¢) = P(T > 1) = /OO f(x)dx
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Fig. 2: Relationship among different entities f(¢), F'(t) and S(t).
[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]
[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Maximum likelihood estimation

« Commonly parametric densities for f(t):

Table 2.1 Useful parametric distributions for survival analysis

Distribution Survival function Density function f(¢)
S(1)

Exponential (A > 0) exp(—Ar) Aexp(—Ar)

Weibull (), ¢ > 0) exp(—At?) APt P~ exp(—At?)

Log-normal (parameters 1 — ®{(nt — pw)/o} | {(nt — p)/c}(ot)~!

(0>0.n€R) canbea

Log-logistic functionofx) | 1/ +X?) Agt?™ 1) /(1 + At?)?

(A>0,¢0>0)

Gamma (\, ¢ > 0) 1 — I\, ) AN/ T ()P exp(— )

Gompertz exp{%(l — e?)) Ae?t exp{%(l — e?))

(A, ¢ > 0)

[Ha, Jeong, Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017]



Maximum likelihood estimation

e Two kinds of observations: censored and uncensored

Uncensored likelihood
pe(T=t|x) = f(¢)

Censored likelihood
p§nsred(t|x) = po(T > t]x) = S(2)
* Putting the two together, we get:

> bilogpsmeored(e|x) + (1—b;) logp (t]x)
=1

Optimize via gradient or stochastic gradient ascent!



Evaluation for survival modeling

* Concordance-index (also called C-statistic): look at
model’s ability to predict relative survival times:

AN 1 AN AN
6= —— E E I[S(9;1X5) > S(9:|X5)]
num ,
1:b; = 07:y; <y
* |llustration — blue lines denote pairwise comparisons:

Y .y2 ‘)’3

V4 Ys
O @
Black = uncensored

Red = censored

* Equivalent to AUC for binary variables and no censoring

[Wang, Li, Reddy. Machine Learning for Survival Analysis: A Survey. 2017]



Final thoughts on survival modeling

* Could also evaluate:
— Mean-squared error for uncensored individuals
— Held-out (censored) likelihood

— Derive binary classifier from learned model and
check calibration

* Partial likelihood estimators (e.g. for cox-
proportional hazards models) can be much
more data efficient



Dealing with non-stationarity

e Baseline: Retrain the model with most recent
data

e How to best use historical data?

— Impute or transform historical data to look like
current data (e.g., Ganin et al., JMLR ‘16)

— Reweight historical data to look like current data
(see e.g. Sugiyama and Kawanabe, ‘12)

— Online algorithm that adapts quickly
(see e.g. Shen et al. Al Stats ‘18)



Recap of risk stratification

* Classification vs. survival modeling
(regression)

* Causal interpretation of predictive features
* Imputation of missing data
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Physiological time-series

Fig. 4. Probes used to collect vital signs data from an infant in intensive care.
1) Three-lead ECG, 2) arterial line (connected to blood pressure transducer),
3) pulse oximeter, 4) core temperature probe (underneath shoulder blades), 5)
peripheral temperature probe, 6) transcutaneous probe.

(Quinn et al., TPAMI 2008)



Physiological time-series

* Typical use cases:

1. Infertrue physiological signal from noisy observations
2. Risk stratification, e.g. predict clinical deterioration, or
diagnosis

* Approach taken depends on:

— |Is labeled data available?
— Do we have a good mechanistic/statistical model?
— How much training data is there?



Two very different trajectories
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Problem: measurements confounded by
interventions & measurement errors
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(Quinn et al., TPAMI 2008)



Can we identify the artifactual
processes?

 Once identified, can remove for use in downstream
predictive tasks (must deal with missing data)

* Can help mitigate alarm fatigue by not alerting the
clinicians when unnecessary

 More broadly, can we maintain beliefs about the true
physiological values of a patient?



(Switching) linear dynamical systems

* Conditioned on s,, linear Gaussian state-space
models (Kalman filters):

Xt o~ N(A(St)xt_ler(St),Q(St))
yt o~ N(C(St)xt,R(St))

Xl X2 X3 X4 XS X6
State
Observations

Yl Y2 Y3 Y4 Y5 Y6



(Switching) linear dynamical systems

 Full model:

State —_—

Confounding
factors (e.g. St—1 St St+1 —>
artifactual events)

Observations @ @ @




Learning SLDS models

* Assume some labeled training data {s,y}
* True state x assumed to never be observed
* Learn using expectation maximization

E-Step
Impute
variables

Confounding
factors (e.g.
artifactual events)




Parameterizing model

* Normal heart rate dynamics are well-modeled
using an autoregressive process, e.g.
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(Quinn et al., TPAMI 2008)



Parameterizing model

* One can use domain knowledge to specify
parts of the artifacts model

— Probe dropouts modeled by removing
dependence of observation y, on patient state x,

— Temperature probe disconnection: exponential
decay to room temperature

State

Confounding
factors (e.g.
artifactual events)

Observations

(Quinn et al., TPAMI 2008)



Evaluation

* 3-fold cross validation, where for each fold
train on 10 babies and test on 5

e 24-hours of data for each baby

* Normal dynamics refit for test babies using a
30-minute section near the start

(Quinn et al., TPAMI 2008)



GS = Gaussian-sum

approximation (used for
inference)

RBPF = Rao-Blackwellized
particle filtering
approximation (used for
inference)

FHMM = Factorial HMM
(simpler model which

does not modelnormal
physiological dynamics)
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Inference of physiological state
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Incu. temp.

(°C)

TcPCO,  TcPO, Core temp.
(kPa) (kPa)
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Detecting atrial fibrillation

AliveCore ECG
device

ECG = electrocardiogram



What type of heart rhythm?

Normal rhythm

Amplitude (mV)

AF rhythm

Amplitude (mV)
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Otherrhythm
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=

Noisy recording
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[Clifford, Liu, Moody, Mark. PhysioNet Computingin Cardiology Challenge 2017]



R-R interval

Q-T interval

T-Q) interval

P-R
segment 5-T segment
P | T P
LAY \
. 3 5-T interval Q
iutl:&-rn?al QRS interval
e e o



Traditional approach

r———~>"~>"="== : r—--—-—-—-=- II r———~>"~>"="== : r—---—--== II
: : : . ' Peak '
! Linear ! ' Nonlinear | ' S b - !
I I I I I I
—»ECG | Filtering | i Filtering | — | DeLtecjuon : | D :
x(n) | | I | ogic | !
Preprocessing Stage Decision Stage

2. Common structure of the QRS detectors.

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE
Engineeringin Medicine & Biology, 2002]



Feature Signal
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3. Peak detector proposed in [41].

[Kohler, Hennig, Orglmeister. The Principles of Software QRS Detection, IEEE
Engineeringin Medicine & Biology, 2002]
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Fig. 1 Time series showing RR intervals from subject 202 from
MIT-BIH arrhythmia database. (——) Assessment of atrial

fibrillation (AF) or non-atrial fibrillation (N) as reported in
database

[Tateno & Glass, Automatic detection of atrial fibrillation using the coefficient of variation and density
histograms of RR and ARR intervals. MBEC, 2001]



COMPUTERS ANDp BIOMEDICAL RESEARCH 4, 385-392 (1970)

Cardiac Arrhythmia Classification:
A Heart-Beat Interval-Markov Chain Approach ¥

WiLL GERSCH,f Davio M. Eppy,f anp Eucene DONG, JR.S§

Division of Cardiovascutar Surgery, Department of Surgery, Stanford University
Medical Center, Stanfard, California 94305

Received March 2, 1970

A sequence of heart-beat intervals (R-R wave intervals) is automatically trans-
formed into a three-symbol Markov chain sequence. For convenience the symbols
used may be thought of as S-R-L for short, regular, and long heart-beat intervals,
respectively. The probability that the observed sequence was generated by each of a
set of prototype models characteristic of different cardiac disorders is computed.
That prototype corresponding to the largest probability of observed sequence gener-
ation is designated as the disorder. This procedure is the equivalent of Kullback’s
classification by the minimization of directed divergence procedure.

In a preliminary experiment primarily using data sequences of 100 heart-beat
intervals, 35 different known cases were automatically classified into six cardiac
disorders without error. The disorders considered were airial fibrillation, APC and
VPC, bigeminy, sinus tachycardia with occasional bigeminy. sinus tachycardia,
and  ventricular  tachycardia.

An automatic procedure to classify cardiac arrhythmias using a Markov chain
interpretation of heart-beat interval data is reported. A sequence of heart-beat



Proceedings Computersin Cardiology (1991)

Detection of Atrial Fibrillation Using Artificial Neural Networks

SG Artis, RG Mark, GB Moody

Harvard-MIT
Division of Health Sciences and Technology, Cambridge, MA

Abstract

Artificial neural networks (ANNs) were used as pai-
tern detectors to detect atrial fibrillation (AF) in the
MIT-BIH Arrhythmia Database. ECG data was repre-
sented using generalized interval transition matrices, as
in Markov model AF detectors[1]. A training file was
developed, using these transition matrices, for a back-
propagation ANN. This file consisted of approzimately
15 minutes each of AF and non-AF data. The ANN
was succesfully trained using this data. Three standard
databases were used to test network performance. Post-
processing of the ANN output yielded an AF sensitivity

of 92.86% and an AF positive predictive accuracy of
92.34%.

1 Introduction

on R-R interval sequences using a variety of statistical
methods {1] but there is room for improvement in these
techniques.

Pattern classifiers exist in many forms, and artificial
neural networks (ANNs) represent an important sub-
set of these classifiers. ANNs are attractive for solving
pattern recognition problems because few assumptions
about the underlying data need to be made. The task
of the operator of an ANN is to separate the data into
subsets. The network will be able classify these sub-
sets according to type as long as they are distinct. Neu-
ral network training requires appropriate training data,
pre-processing and post-processing algorithms, an ap-
propriate network topology, and a training algorithm,
as well as evaluation databases. This document will
present the design and evaluation of a technique which
detects AF in the presence of other cardiac arrhythmias
using a backpropagation artificial neural network.



Winning approach

* Training datain 2017 Physionet challenge: ~8500 ECGs

* Best algorithms use a combination of expert-derived
features and machine learning

Rhythm level
Interpretation

A
Conduction level | \

| ,

|\ /|
Interpretation '| J Il’ /\ / "\ M\N\\
Initial evidence ﬂ J l

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]
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Table 1: Set of features used to train the global classifier

tSR: Proportion of the record length interpreted as
a regular rhythm (Normal rhythm, tachycardia or
bradycardia).

t1b: Number of milliseconds from the beginning of the
record to the first interpreted heartbeat.

tOR: Number of milliseconds interpreted as a non-regular
rhythm.

longTch: Longest period of time with heart rate over
100bpm.

RR: Median RR interval of regular rhythms.

RRd_std: Standard deviation of the instant RR variation.

RRd: Median Absolute Deviation (MAD) of the RR
interval in regular rhythms.

MRRd: Max. absolute variation of the RR interval in
regular rhythms.

RR_MIrr: Max. RR irregularity measure.

RR_Irr: Median RR irregularity measure.

PNN{10,50,100}: Global PNNx measures.

o_PNN50: PNN50 of non-regular rhythms.

mRR: Min. RR interval of regular rhythms.

o_mRR: Min. RR interval of non-regular rhythms.

n_nP: Proportion of heartbeats with detected P-wave
inside regular rhythms.

n_aT: Median of the amplitude of the T waves inside
regular rhythms.

n_PR: Median PR duration inside regular rhythms.

Psmooth: Median of the ratio between the standard

deviation and the mean value of P-waves’ derivative
signal.
Pdistd: MAD of the measure given by the P wave | MPdist: Max. of the measure given by the P wave

delineation method.

delineation method.

prof: Profile of the full signal.

pw_profd: MAD of pw_prof.

XCOrr: Median of the maximum cross-correlation | o_xcorr: Median of the maximum cross-correlation

between QRS complexes interpreted in regular rhythms. between QRS complexes interpreted in non-regular
rhythms.

PRd: Global MAD of the PR durations. QT: Median of the corrected QT measure.

TP: Median of the prevailing frequency in the TP | TPfreq: Median of the frequency entropy in the TP

intervals. intervals.

pw_prof: Profile measure of the signal in the P-wave area.

nT: Proportion of QRS complexes with detected T waves.

n_Txcorr: Median of the maximum cross-correlation
between T-waves inside regular rhythms.

n_Pxcorr: Median of the maximum cross-correlation
between P-waves inside regular rhythms.

baseline: Profile of the baseline in regular rhythms.

o_baseline: Profile of the baseline in non-regular

rhythms.

wQRS: Proportion of wide QRS complexes (duration
longer than 110ms).

wQRS_xc: Median of the maximum cross-correlation
between wide QRS complexes.

wQRS_prof: Median of the signal profile in the 300ms
before each wide QRS complex.

w_PR: Proportion of heartbeats with long PR interval
(longer than 210 ms).

x_xc: Median of the maximum cross-correlation between
ectopic beats.

x_rrel: Median of the ratio between the previous and
next RR intervals for each ectopic beat.

[Teijeiro, Garcia, Castro, Felix. arXiv:1802.05998, 2018]




Not enough data for deep learning?
Wrong architectures?

“However, the fact that a standard random
forest with well chosen features performed as
well as more complex approaches, indicates
that perhaps a set of 8,528 training patterns
was not enough to give the more complex
approaches an advantage. With so many
parameters and hyperparameters to tune, the

search space can be enormous and significant
overtraining was seen...”

[Clifford et al. AF Classification from a Short Single Lead ECG Recording: the
PhysioNet/Computingin Cardiology Challenge, Computingin Cardiology 2017]
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Stanford ML Group

Cardiologist-Level Arrhythmia Detection
With Convolutional Neural Networks

Pranav Rajpurkar®, Awni Hannun*, Masoumeh Haghpanahi, Codie Bourn,
and Andrew Ng

A collaboration between Stanford University and iRhythm Technologies

We develop a model which can diagnose SINUS
irregular heart rhythms, also known as

arrhythmias, from single-lead ECG signals
better than a cardiologist. - Jf—/»-~

Key to exceeding expert performance is a deep convolutional
network which can map a sequence of ECG samples to a sequence
of arrhythmia annotations along with a novel dataset two orders of
magnitude larger than previous datasets of its kind.

[Rajpurkaretal., arXiv:1707.01836, 2017; Nature Medicine ‘19]



Differences with previous work

Sensor is a Zio patch — conceivably much less
noisy:

~90K ECG records annotated (from ~50K patients)

ldentify 12 heart arrhythmias, sinus rhythm and
noise for a total of 14 output classes



Train + Val Test

Class Description Example Patients Patients

AFIB Atrial - Fibrilla- AJ(\JH 4638 44
tion

AFL Atrial Flutter W 3805 20

Second degree
AVB_TYPE2 AV Block Type

2 (Mobitz II) (\/\A

BIGEMINY Yentricular W\JM,LM 2855 2
Bigeminy

Complete Heart
CHB Block 843 26
L

Ectopic  Atrial

EAR Rhythm g u JL
Idioventricular Aj

IVR Rhythm W 1962 34

1905 28

2623 22




Train + Val Test

Class Description Example Patients Patients
JUNCTIONAL f;‘ﬁ;ﬁ‘r’;‘al WWW 2030 36
NOISE Noise MWW%M 9940 41
SINUS Sinus Rhythm A/L\/ /\J/\/ 22156 215
SVT %:fﬁ;ﬁ?fériiacmar W /\W\W 6301 34
TRIGEMINY }’ff;ﬁﬂ;r ,AMAW /M /b /\/N 2864 21
i Yot WM J db w
|
WENCKEBACH mggﬁ‘;bl?‘:h w K\ 2051 29




I o Input

Deep =
convolutional o
network .
e 1-D signal sampled at 200Hz, i~
labeled at 1 sec intervals
* 34 layers $
» Shortcut connections (ala o
residual networks) with max- o
pooling o

conv

 Subsampled every other layer |
(28 in total) g

RelLU

dense

[Rajpurkaretal., arXiv:1707.01836, 2017; Nature Medicine “19] coftmax | = Output



Example of 1D convolution

1,0,1>*<2,3,1>=1*2+ 0*3 + 11

e
Filter FRMERIII

@mgﬂﬂﬂ Input

Output




Evaluation

Seq Set

Model Cardiol. Model Cardiol.

Class-level F1 Score

AFIB 0.604 0.515 0.667 0.544
AFL 0.687 0.635 0.679 0.646
AVB_TYPE2 0.689 0.535 0.656 0.529
BIGEMINY 0.897 0.837 0.870 0.849
CHB 0.843 0.701 0.852 0.685
EAR 0.519 0.476 0.571 0.529
IVR 0.761 0.632 0.774 0.720
JUNCTIONAL 0.670 0.684 0.783 0.674
NOISE 0.823 0.768 0.704 0.689
SINUS 0.879 0.847 0.939 0.907
SVT 0.477 0.449 0.658 0.556
TRIGEMINY 0.908 0.843 0.870 0.816
VT 0.506 0.566 0.694 0.769
WENCKEBACH 0.709 0.593 0.806 0.736
Aggregate Results

Precision (PPV) 0.800 0.723 0.809 0.763

Recall (Sensitivity) 0.784 0.724 0.827 0.744
F1 0.776 0.719 0.809 0.751




True label
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Summary

 We are nearly always in realm of “not enough
data”

* Modeling and incorporating prior knowledge
is critical to good performance

* Design principles
— Model the distribution of physiological dynamics
— Derive features using existing clinical knowledge

— Start from the simplest possible model
— Share statistical strength across tasks



